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6.1 Introduction

Damage control resuscitation (DCR) for trauma,
initially described to address the entire lethal
triad immediately upon admission to a combat
hospital before damage control surgery (DCS)
[1], is now accepted as part of an integrated
approach DCR-DCS from point of wounding to
definitive treatment [2]. Therefore, DCR can be
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divided in two steps: while bleeding is ongoing
and once bleeding has been stopped.

6.1.1 Physiological Bleeding

Control

When bleeding occurs, the baroreceptors located
in the aortic arch and carotid sinus detect the drop
in arterial pressure. This information is transmit-
ted to the brain stem, which immediately
increases sympathetic tone [3]. This increased
sympathetic tone causes tachycardia (oxygen
transportation is ensured by less blood that circu-
lates faster) and vasoconstriction which favours
the blood circulation of the heart and brain at the
expense of all other organs and tissues (gut, kid-
ney, muscle and skin). Vasoconstriction at the
bleeding site decreases bleeding flow and allows
platelets and the activated coagulation factors to
seal the leak by a vascular clot [4] (Fig. 6.1).
Fibrinolysis regulates coagulation [5] and pre-
vents vascular occlusion. In favourable cases, the
bleeding has stopped or slowed. In unfavourable
cases, because the vascular breach is too large or
the bleeding sites are multiple, the trauma patient
is in a situation where the coagulation factors
have been consumed, fibrinolysis is activated [6],
a large volume of blood has been lost, tachycar-
dia and vasoconstriction are not sufficient to
compensate for blood loss and therefore the
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Fig. 6.1 Simplified pathophysiology of bleeding.
Bleeding induces hypovolaemia and low blood pres-
sure that trigger volume and baroreceptors which, in
turn, transmit the information to the central nervous
system [3]. This results in increased sympathetic vas-
cular tone with the double role of maintaining cerebral
transfusion and stopping the bleeding. Vasoconstriction
in the entire organism (except the heart and brain) devi-
ates the blood supply to the brain, while decreasing

oxygen carrying capacity continues to decrease
while the bleeding goes on.

6.1.2 The Lethal Triad:
Hypothermia, Acidosis
and Coagulopathy

Blood loss causes hypothermia, as the blood
plays, among others, the role of a heat transfer
liquid. In the cells of a bleeding trauma patient,
because of oxygen deficiency, glycolysis stops at
the step of pyruvate, which, instead of being con-
sumed by the Krebs cycle, feeds lactate produc-
tion [7]. Therefore bleeding trauma patient

blood loss by decreasing the flow and pressure at the
level of the vascular injury leaves time for clot forma-
tion [4]. Increased heart rate allows partial compensa-
tion of the loss of oxygen transportation by increasing
the rapidity of red blood cell circulation. At the same
time, urine output is decreased by activation of the
renin-angiotensin-aldosterone complex with the goal of
compensating hypovolemia (E. Voiglio et al. J Visc
Surg. 2016,153,13-24)

develops lactic acidosis. Coagulation proteins are
enzymes that function at 37 °C and pH greater
than 7.2. Under hypothermic and acidotic condi-
tions, the coagulation factors have decreased
activity [8]. Being the blood hypocoagulable, the
bleeding continues later exacerbating hypother-
mia and acidosis which themselves exacerbate
coagulopathy: the haemorrhagic vicious circle
[9] is constituted which leads to the death of the
trauma patient by exsanguination (Fig. 6.2).
While it is very difficult to take out a trauma
patient from this vicious circle, it is very easy to
drive him there. It is sufficient to delay the time
of haemostasis by a superfluous ‘equipment’ and
unnecessary imaging investigations (further

52
53

55

57

59

61

62

63

65



Author's Proof

3889

7
72
73
74
75
76

78
79
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Fig. 6.2 Simplified bloody vicious circle. Acute bleeding
triggers cellular hypoxia resulting in metabolic acidosis
(lactic acid) [7] and hypothermia (decreased metabolism,
loss of heat transport by hypovolaemia). Hypothermia and
acidosis lead to coagulopathy because the coagulation fac-
tors are enzymes that do not work efficiently below 34 °C
and or pH <7.25 [8]. Coagulopathy exacerbates bleeding.
Crystalloid volume resuscitation results in dilution of the
coagulation factors, cooling and induction of acidosis by
dilution and hyperchloraemia. Transfusions add to the dele-
terious effect of perfusions via the citrate anticoagulants

haemorrhage), to dilute his/her blood with perfu-
sions (hypothermia, dilution acidosis, anaemia,
dilution of coagulation factors, hypocoagulabil-
ity induced by hydroxyethyl starch [12]) and to
rely on a misleading ‘haemodynamic stability’
artificially achieved by administration of vaso-
pressors (lactic acidosis from visceral and periph-
eral ischaemia). It has been demonstrated for
patients with severe injury of the abdomen and
hypotensive at admission that the probability of
death increases by 1% every 3 min spent in the
shock room [13]. Medico-surgical procrastina-
tion is a great provider of haemorrhagic vicious
circle.

Permissive hypotension

Administer O,

added to PRBC (acidosis and hypocalcaemia) [10]: con-
versely, transfusions can decrease cell hypoxia by improv-
ing oxygen transportation. The only way to interrupt the
vicious circle is to stop the bleeding [11]. Administration of
oxygen, and limiting IV fluid volume, the strategy of per-
missive hypotension, combating hypothermia, early transfu-
sion of packed red cells, correction of coagulation disorders
by supplying the necessary factors and correction of hypo-
calcaemia can slow down the vicious circle and buy the time
necessary to obtain haemostasis (E. Voiglio et al. J Visc
Surg. 2016,153,13-24)

6.2 Damage Control
Resuscitation
Before Bleeding Is Stopped
6.2.1 Initial Assessment: Advanced

Trauma Life Support (ATLS)
Protocol

The treatment of bleeding is to stop the bleed-
ing [11]. Damage control resuscitation is a
management strategy of which goal is to
enable survival of the trauma patient until
bleeding is controlled while keeping the risk
of iatrogenicity to a minimum. Damage con-
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trol resuscitation is part of ATLS ABCDE pro-
tocol [14] that ensures oxygenation of the
cells:

¢ Airway: airway is most often secured by
orotracheal intubation. When orotracheal
intubation is impossible and airway has to be
secured, cricothyroidotomy is a DC proce-
dure [15]. C-spine is protected by a cervical
collar.

¢ Breathing: trauma patient is given 100% O,.
The Sa0, is monitored. If a pleural effusion
(pneumo- and/or haemothorax) is present,

a chest tube is placed. A sucking
thoracic wound is treated by a vented chest
seal [16].

¢ Circulation: control of bleeding is initially
achieved, depending on situations, by direct
pressure eventually enhanced by haemo-
static dressings [17], by tourniquet place-
ment [18] or by placement of a pelvic sling
[19]. ECG and blood pressure are monitored
non-invasively. Two large-bore intravenous
lines or one intraosseous line is placed.
Crystalloid perfusion is started. In case of
haemorrhagic shock, permissive hypoten-
sion and transfusion of red blood cell unit
(RBC) (O Rh- then type specific) and early
plasma administration are recommended
[14]. A FAST echography is performed to
look for intraperitoneal bleeding and cardiac
tamponade [20].

¢ Disability: GCS score is calculated, pupillary
reactivity and symmetry are checked, and
focal neurological deficits are searched.

* Exposure: patient’s dresses are removed, and
a logroll is performed to allow complete
examination including the back. Body tem-
perature is monitored.

Whenever a patient presents haemorrhagic
shock by an active bleeding that cannot be con-
trolled by external manoeuvres, damage con-
trol resuscitation is indicated as long as
haemostasis has not been achieved most often
by surgery, sometimes by interventional
radiology.

6.2.2 Targeted Blood Pressure
with Permissive Hypotension
and Restrictive Fluid
Administration

Traditional fluid resuscitation in the polytrauma
patient involved rapid infusion of large volumes
of clear fluids in an attempt to rapidly restore cir-
culating blood volume and blood pressure. It has
become apparent that this approach has several
potentially detrimental consequences. The prem-
ise of permissive hypotension is to keep the
blood pressure low enough to avoid exacerbat-
ing haemorrhage by hydrostatic clot disruption
while maintaining adequate end-organ perfusion
[21]. The concept of damage control resuscita-
tion aims to achieve a lower than normal blood
pressure, also called ‘permissive hypotension’,
and thereby avoid the adverse effects of early
aggressive resuscitation using high doses of flu-
ids while there is a potential risk of tissue hypo-
perfusion during short periods [22]. Permissive
hypotension and restrictive fluid administration
are therefore reciprocal components of this
approach; initial fluid administration is delayed
or minimized, and less aggressive resuscitative
end points are used. A targeted systolic blood
pressure (SBP) of 80-90 mmHg is recommended
until major bleeding has been stopped in the ini-
tial phase following trauma without brain injury
[23]. In patients with severe traumatic brain
injury (GCS <8), maintenance of a mean arterial
pressure >80 mmHg is recommended [23]. This
approximately equates to aiming for the restora-
tion of a palpable radial pulse. A restrictive fluid
administration strategy is recommended to
achieve target blood pressure until bleeding can
be controlled [23]. Such an approach decreases
both the severity and incidence of dilutional
coagulopathy and as such complements a strat-
egy of haemostatic resuscitation. Second, this
reduces fluctuations in, and elevation of, systolic
blood pressure which may disrupt the premature
blood clot forming in areas of injury causing fur-
ther bleeding. Therefore, it would appear that
restricting initial IV fluid administration in the
severely injured should have advantages, and the
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6 Damage Control Resuscitation

infusion of large volumes of crystalloid is no
longer appropriate. In specific situations, per-
missive hypotension may also be of benefit, par-
ticularly in patients with severe haemorrhage
from an arterial source. Great caution should be
taken in those with concomitant head injury, and
further work is required to clearly delineate
which patients might benefit the most from this
approach [24].

6.2.3 Vasopressor Agents

Vasopressors may be required transiently to sus-
tain life and maintain tissue perfusion in the pres-
ence of life-threatening hypotension, even when
fluid expansion is in progress and hypovolaemia
has not yet been corrected [23]. If used, it is
essential to respect the recommended objectives
for SBP (80-90 mmHg) in patients without trau-
matic brain injury [23]. Norepinephrine is the
agent of choice to restore and maintain target
arterial pressure in haemorrhagic shock. Although
it has some B-adrenergic effects, it acts predomi-
nantly as a vasoconstrictor. Arterial a-adrenergic
stimulation increases arterial resistance and may
increase cardiac afterload; norepinephrine exerts
both arterial and venous a-adrenergic stimula-
tion. Indeed, in addition to its arterial vasocon-
strictor  effect,  norepinephrine  induces
venoconstriction at the level of the splanchnic
circulation in particular, which increases the
pressure in capacitance vessels and actively shifts
splanchnic blood volume to the systemic circula-
tion [25]. This venous adrenergic stimulation
may recruit some blood from the venous
unstressed volume. Moreover, stimulation of
p2-adrenergic receptors decreases venous resis-
tance and increases venous return [25]. Animal
studies that investigated uncontrolled haemor-
rhage have suggested that norepinephrine infu-
sion reduces the amount of fluid resuscitation
required to achieve a given arterial pressure tar-
get, is associated with lower blood loss and sig-
nificantly improved survival [26, 27].
Furthermore, because vasopressors may
increase cardiac afterload if the infusion rate is

excessive or left ventricular function is already
impaired, an assessment of cardiac function dur-
ing the initial ultrasound examination is essential.
Cardiac dysfunction could be altered in the
trauma patient following cardiac contusion, peri-
cardial effusion or secondary to brain injury with
intracranial hypertension. The presence of myo-
cardial dysfunction requires treatment with an
inotropic agent such as dobutamine or epineph-
rine. In the absence of an evaluation of cardiac
function or cardiac output monitoring, cardiac
dysfunction must be suspected in the presence of
a poor response to fluid expansion and
Vasopressor.

6.2.4 Red Blood Cell Transfusion

Blood’s main duty is to carry and deliver oxygen
to tissues. During bleeding, this capacity is
degraded due to two principal phenomena: drop
in local blood flow and loss of oxygen carrier,
haemoglobin. As seen in the previous section,
local blood flow can be restored at least tempo-
rarily by fluid infusion and vasopressors use. This
fluid infusion, combined with the physiological
response to blood loss leading to fluid transfers
from cellular and interstitial compartments to the
vascular bed, causes the dilution of the haemo-
globin and the drop in haemoglobin level (Hb).
However, because the relationship between Hb
and adverse outcomes in patient with haemor-
rhagic shock has not been assessed yet [28], it is
not possible to determine with certitude the opti-
mal Hb in trauma patients.

Because no artificial oxygen carrier is avail-
able so far, the only way to restore the capability
of blood to carry oxygen to the tissues is to trans-
fuse RBCs. RBCs are available as packed RBCs
(PRBCs) from blood banks. The shelf storage
time is limited to about 40 days at 4 °C, but the
longer the storage, the more lysed RBCs release
intracellular toxic content as potassium or free
haemoglobin. This is why a LIFO (last in, first
out) procedure for PRBCs release from blood
banks needs to be implemented for severely
injured patients [29].
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In the European guidelines, the Hb threshold
for PRBCs transfusion is set to 7-9 g/dL [23]
where in US guidelines Hb is set to 7 g/dL [30].
These recommendations are based on studies
showing that PRBCs transfusions can be
associated with increased mortality, lung injury,
increased infection rate and renal failure in
injured patients and mainly on the Transfusion
Requirements in Critical Care (TRICC) study
demonstrating no efficacy of liberal approach
(Hb threshold of 10-12 g/dL) versus restricted
approach (7-9 g/dL) on mortality [31]. For
patients with concomitant haemorrhagic shock
and traumatic brain injury, recent studies demon-
strate no beneficial effect of a higher Hb thresh-
old for RBCs transfusion on mortality or
neurological outcomes but a higher risk of throm-
boembolic events [32, 33], even if a higher Hb
improves local cerebral oxygenation [34].

RBCs play also a major role in haemostasis.
Circulating RBCs marginate the platelets close to
the endothelium, enhancing their adhesion capa-
bilities [35], and support thrombin generation
providing interactions with coagulation factors
on their cellular surfaces [36].

6.2.5 Fibrinolysis Prevention

Fibrinolysis is a key component of the physio-
logical haemostasis system. It mainly involves
the tissue plasminogen activator (tPA) and its
inhibitors, the plasminogen activator inhibitors
(PAIl and 2) to regulate the activation of the
plasminogen into plasmin, responsible for fibrin
binding and degradation. However, a huge stim-
ulation of the coagulation system after severe
trauma and activated protein C (aPC) system
activation by tissue hypoperfusion [37] can lead
to an exacerbation of the fibrinolysis. This
hyperfibrinolysis is an essential part of the ACoT
and is associated with a mortality rate of nearly
90% [38].

The best way to assess hyperfibrinolysis in
trauma patients is to use viscoelastic tests.
However, the low sensitivity of this method does
not allow to detect low increases in fibrinolytic
activity, still accountable for ACoT [39].

Hyperfibrinolysis contribution to ACoT can
be lower by the use of an antifibrinolytic agent.
The CRASH-2 study [40] assessed the system-
atic injection of tranexamic acid (TXA) in trauma
patients with or at risk of severe bleeding. The
competitive binding of the plasminogen/plasmin
site on the fibrin allows the TXA to inhibit the
fibrinolysis. The injection of a loading dose of
1 g of TXA over 10 min followed by the infusion
of 1 g over 8 h led to a significant reduction in
mortality from bleeding without an increase in
thromboembolic events rate. From that same
trial, a deeper analysis showed that TXA lowers
the risk of death by bleeding by 2.5% if given less
than 1 h after trauma and by 1.3% if given
between 1 and 3 h after trauma. However, the risk
is increased by 1.3% if the TXA is given more
than 3 h after trauma [41]. The MATTERS study
conducted in military setting later consolidated
these conclusions [42]. Based on these results,
European guidelines recommend the systematic
injection of TXA (1 g/10 min, 1 g/8 h) as soon as
possible, within the 3 h after the injury [23].

6.2.6 Plasma and Platelet
Transfusion in Haemostatic
Resuscitation

Coagulation factors and platelets can be shed,
consumed, diluted or inactivated in severe trauma
patients. Even if they play only a partial role in
the ACoT, their replacement is crucial to restore
the haemostasis. Standard available fresh frozen
plasma (FFP) contains all the major coagulation
factors in proportions close to the physiological
levels and seems to have anti-inflammatory prop-
erty while lessening the endothelial hyper-
permeability after haemorrhagic shock [43]. Its
transfusion should be initiated as soon as possible
to avoid iatrogenic or physiological dilutional
coagulopathy during a balanced resuscitation
with PRBCs. However, the optimal ratio of FFP
to PRBCs remains of debate. Some studies
showed a potential benefit of an FFP-PRBCs
ratio close to 1:1 [44, 45]. However, these results
were discussed and potentially flawed by survival
bias (i.e. less severe patients survive longer
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6 Damage Control Resuscitation

enough to get more plasma, thawed plasma being
available later than PRBCs) [46]. The recent
PROPPR randomized clinical trial [47] compared
1:1:1 FFP-PLT-PRBCs ratio to 1:1:2 in severe
trauma patients without survival bias.
Unfortunately, the results showed a
nonstatistically significant reduction in mortality
for the 1:1:1 ratio group, letting the question
open. European guidelines propose to transfuse 1
FFP every two PRBCs during the initial manage-
ment of patients with expected massive haemor-
rhage, continued with goal-directed therapy
based on standard laboratory (PT or aPTT infe-
rior to 1.5 times the normal controls) and/or vis-
coelastic tests [23]. To resolve the delay in
availability of the FFP, plasma can be stored as
thawed plasma or liquid (fresh nonfrozen)
plasma. But in this form, labile coagulation fac-
tors like FVIII can be depleted [48]. Lyophilized
plasma provided by the French military is a nice
option. Available in 10 min, stable at room tem-
perature and universal, it offers a great alternative
to FFP [49].

Fibrinogen, a key component in the coagula-
tion cascade, is the first and most depleted factor
in haemorrhagic trauma patients [50]. However,
FFP concentration in fibrinogen is not high
enough to restore fibrinogen levels with only FFP
transfusion [51], and it may be required to admin-
istered fibrinogen through cryoprecipitate or
fibrinogen concentrate.

Platelet depletion or dysfunction [52] in
trauma patients needs to be addressed by platelet
transfusion. Platelets are available as platelet
concentrate (PLT) or apheresis platelets (aPLT)
containing approximately six times more plate-
lets and plasma. European guidelines [44] pro-
pose to transfuse platelets if platelet count is less
than 50.10°L in trauma patients or less than
100.10°/L in case of ongoing bleeding or trau-
matic brain injury.

The best way to replace shed whole blood
after or during haemorrhage would be to use
whole blood, in replacement for component ther-
apy. Even if used and authorized in remote mili-
tary setting when blood products are lacking and
needs for transfusion surge [53, 54], this tech-
nique has not reached the routine clinical prac-

tices because of some misconceptions (necessity
for whole blood to be ABO specific, impossibil-
ity to obtain leucoreduced whole blood while
maintaining platelets and loss of platelet function
caused by cold storage) [55].

6.2.7 Viscoelastic Techniques
and Administration
of Concentrated Factors

Standard coagulation tests are of little use for
haemorrhagic shock management because they
generally require more than an hour, and urgent
corrective action may not be delayed that long.
To adapt the treatment of haemostasis after the
initial phase, viscoelastic techniques (VETs) may
be very useful. VETs have been developed for
several years and represent a comprehensive
assessment of clot formation based on the mech-
anisms originating coagulopathy, including, in a
second stage, inflammatory phenomena [56, 57].
It is possible to obtain a faster and more accurate
evaluation of haemostasis through the use of acti-
vator or inhibitor which allows to distinguish
phenomena occurring during ongoing bleeding
such as fibrinogen deficit and hyperfibrinolysis.
Identifying deficits makes possible to intervene
specifically with clotting factor concentrates,
avoiding the use of labile blood products (LBP),
and, although this remains to be demonstrated
formally, reduce morbidity related to the use of
the LBP (multiple organ failure, infection, ARDS,
TRALI and TACO) [58-60]. According to the
latest European guidelines, VETs are accepted as
alternative to standard coagulation tests to guide
the treatment of posttraumatic coagulopathy

(grade 1C) [23].

6.2.7.1 Principles of Clot Viscoelastic
Property Studies

Clot formation is assessed with ROTEM® (Tem
GMBH, Munich, Germany) or with TEG®
(Haemoscope Corporation, Niles, Illinois, USA).
These tools explore dynamics of clot develop-
ment, stabilization and dissolution (fibrinolysis)
[60—64]. The measured parameters are time (s),
amplitude (mm) or angles. The measurements are
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made on whole blood collected in a citrated tube.
The recalcified blood is then placed in a cuvette
heated to 37 °C (or to temperature of the patient),
in which a pin is plunged. The speed of rotation
thereof will depend on the viscosity of blood.
According to the technique, it is either the cuvette
which rotates (TEG®) or the pin (ROTEM®). In
the latest version of TEG®, measures are made
by an electro-optical technique. To accelerate the
technical and differentiating phenomena involved
in haemostasis disorders, activators are added.
They depend on the type of techniques used [60].

ROTEM® analyser uses routinely four chan-
nels: INTEM (intrinsic contact activation path-
way explored by adding ellagic acid), EXTEM
(extrinsic pathway explored by adding tissue fac-
tor), FIBTEM (addition of cytochalasin D which
blocks the platelets to explore fibrinogen func-
tion) and APTEM (addition of aprotinin for
inhibiting and therefore exploring fibrinolysis).
Two other channels are used in specific circum-
stances: HEPTEM (INTEM + heparinase to
assess heparin effect) and ECATEM (addition of
ecarin to detect thrombin inhibitors). In trauma,
most useful channels are EXTEM and
FIBTEM. Thus, a deficit in prothrombin and in
fibrinogen and a low platelet count can be dis-
criminated. As an example, an EXTEM with a
short clotting time (thrombin formation correct)
and with a diminished maximal clot firmness will
suggest low platelet activity if maximal clot firm-
ness is normal with FIBTEM.

TEG® analyser uses generally one single
channel after activation by kaolin (equivalent to
INTEM). However, it has been shown that plate-
let and fibrinogen contributions to maximal
amplitude could not be differentiated [65].
Therefore TEG® can now be performed with
addition of both tissue factor and kaolin (rapid-
TEG) to explore the extrinsic pathway, and with
addition of abciximab, a potent platelet inhibitor,
to explore fibrinogen function [66].

6.2.7.2 Coagulopathy Diagnosis by VETs

At admission, the results of the standard biology
are correlated to some ROTEM® parameters,
e.g. clotting time (CT) (EXTEM) and PT (pro-
thrombin time) or maximal clot firmness (MCF)

(FIBTEM) and level of fibrinogen [67, 68].
Similarly, TEG® R parameter (equivalent to CT)
is correlated to PT; correlations were observed
between the parameter R (equivalent to CT) and
PT [69, 70]. However, this good correlation
between standard and viscoelastic techniques at
admission may vary during the management
[57]. Thus, a CT EXTEM is less correlated to PT
after attempt to correct coagulopathy and/or
depending to pathophysiological criteria as aci-
dosis and hypothermia [57]. The standard test
that estimates the concentration of clotting fac-
tors does not take into account the effect of
inflammation that develops in the hours follow-
ing the trauma and activates coagulation. Thus,
only VETs that take into account all parameters
can provide a fair image of coagulation status
[57]. The possibility to predict the need for mas-
sive transfusion has been reported with ROTEM®
[68, 71, 72] as well as with TEG® (rapid-TEG)
[73]. Many algorithms have been proposed to
treat bleeding disorders. However these algo-
rithms are specific to either technique and
non-interchangeable.

6.2.7.3 VETs and Coagulation Factor
Concentrates

Post-traumatic coagulopathy is complex and
includes phenomena of coagulation factor loss,
dilution, thrombocytopenia, platelet disorders,
consumption and fibrinolysis [74]. Fibrinogen
deficiency is the most observed among factor
deficiencies. The massive release of tissue factor
which activates haemostasis and increases throm-
bin generation is important to consider. Thus, in
trauma patients, thrombin generation remains
increased as long as factor levels remain >30%
[75]. This increase in thrombin generation asso-
ciated with the frequently observed fibrinogen
deficiency suggests the order of administration of
haemostatic products. It is thus likely that fibrin-
ogen concentrates have to be administered first,
followed in a second phase (ideally according to
standard coagulation tests or VETs) by the FFP
and the PC (or PCC ? prothrombin complex con-
centrate) except, of course, situations of severe
haemorrhagic shock when fibrinogen FFP and
PCC are administered simultaneously. This
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6 Damage Control Resuscitation

method is only valid when fibrinogen concen-
trates are available (fibrinogen concentrates and/
or cryoprecipitate).

ROTEM® was evaluated in trauma through
retrospective or prospective observational stud-
ies. The level of proof thus remains relatively
low. Schochl et al. suggested in a first study that
ROTEM®-guided administration of coagulation
factors improved patient survival when compared
to a predictive mortality score (TRISS) [76]. The
same group showed that when comparing patients
treated with factor concentrates guided by
ROTEM® with patients receiving labile blood
components (LBC) guided by the standard biol-
ogy, they could reduce significantly the use of
LBC but also the incidence of multiple organ fail-
ure without affecting survival [77]. In a recent
study, an Italian team confirmed the reduction of
the use of LBC reducing costs significantly by
more than 23% but still with no change in sur-
vival [78]. The issue with all these studies (how-
ever this could also be considered an advantage)
is that ROTEM® use is combined with that of
factor concentrates making it difficult to know
what ultimately is most important [79]. A
European randomized study should start soon to
compare standard biology and ROTEM® using
LBP in the same initial ratio (iTACTIC Study,
NCT02593877, trial.gouv).

As regards TEG®, a retrospective study
involving 1974 patients showed that TEG®
could perfectly replace the standard biological
tests [80]. In a recent randomized work, it has
been shown that the use of TEG® in comparison
with the standard biology could improve patient
survival at 28 days without association with a
modification of LBP consumption in the first
24 h except for cryoprecipitate (paradoxically
greater in the group standard biology). A higher
consumption of FFP and PCC was observed in
the group standard biology in the early hours
[81]. According to the authors, this result was
related primarily to a decreased mortality from
bleeding and a decreased early mortality by ear-
lier diagnosis of coagulopathy and appropriate
action. A reduction of ICU stay length with an
increased number of ventilator-free days was
also observed.

Finally, in severe trauma, situations of hyper-
fibrinolysis whose prognosis is catastrophic can
be observed. TEG® and ROTEM® allow a rapid
and accurate diagnosis of hyperfibrinolyses [82]
but will lack sensitivity to assess the intensity of
fibrinolysis especially if minor or moderate [39].
Usually thresholds of 3% maximum fibrinolysis
(maximum lysis) on TEG® and 15% on
ROTEM® are applied to diagnose hyperfibri-
nolysis. If in Europe, tranexamic acid is widely
used since the CRASH-2 trial in severe trauma
[40], in North America, the practice is rather to
administer tranexamic acid to patients with
hyperfibrinolysis documented by VETs [82].

6.3 Damage Control
Resuscitation once Bleeding

Has Been Stopped

Further resuscitation once haemostasis has been
achieved is the intensive care unit resuscitative
phase where physiological and biochemical sta-
bilization is achieved and a thorough tertiary
examination is performed to identify all injuries
(Fig. 6.3) [83]. This step is devoted to reverse the
sequelae of hypotension-related metabolic failure
and support physiological and biochemical resto-
ration. Simultaneous treatment of all physiologi-
cal abnormalities is essential, and as a result, the
first several hours in the ICU are extremely labour
intensive and often require the collaborative
efforts of multiple critical care physicians, nurses
and ancillary staff [84]. Efforts to warm during
surgery, shorten the shock and improve coagula-
tion are pursued. An aggressive approach to cor-
rection of coagulopathy is paramount, and
procoagulant objectives remain the same.
Assessment of visceral dysfunction is achieved
(in particular the lung, kidney and liver). One of
the keys to physiological restoration is the estab-
lishment of adequate oxygen delivery to body tis-
sues. Haemodynamic optimization in this step of
major post-shock inflammation often requires a
significant fluid volume expansion due to vasodi-
lation. The needs of vasopressors can also be
very consequent. Objectives of blood pressure
change and aim to restore adequate perfusion of
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Fig. 6.3 Increasing power of damage control. Damage
control should be started in the field by the paramedics
who are trained to stop bleeding with local pressure or
tourniquets, administer oxygen and combat hypothermia.
The race against the clock starts. The emergency team in
the field should strive for only minimal vascular filling,
the objective being to obtain a systolic blood pressure of
90 mmHg [23]: tranexamic acid should be administered
[42]. O-negative and then type-specific PRBC transfu-
sions are started with the objective of obtaining haemo-
globin of 9 g/dL (according to European guidelines [23]);
coagulation disorders are corrected by administration of

all organs (MAP = 65 mmHg). Invasive monitor-
ing devices are generally used to guide fluid
administration and normalize haemodynamics.
Abramson and colleagues did show that serum
lactate clearance correlates well with patient sur-
vival and that the ability to clear lactate to normal
levels within 24 h was paramount to ensuing
patient survival [85]. Immediate and aggressive
core rewarming not only improves perfusion but
also helps reverse coagulopathy. All of the warm-
ing manoeuvres initiated in the trauma bay and
operating theatre should be duplicated in the
intensive care unit. Gentilello showed that failure
to correct a patient’s hypothermia after a damage

fibrinogen [23].coagulation factors [77] and platelet con-
centrates [23]. The patient is transferred rapidly to the
operating room (or angiography suite, as necessary).
When bleeding has been arrested, blood pressure should
return to normal. Damage control resuscitation should be
pursued until preset objectives of haemoglobin, tempera-
ture and coagulation parameters are attained. The com-
parison with naval damage control can be made in that not
only should the water inflow be stopped, but the vital
functions of the vessel must be restored as well (electric-
ity, communications, propulsion, rudder) (E. Voiglio et al.
J Visc Surg. 2016,153,13-24)

control operation is a marker of inadequate resus-
citation or irreversible shock [84]. A complete
physical examination or ‘tertiary survey’ of the
patient should occur. This should include relevant
imaging studies where appropriate, and the
patient should also proceed to CT scan to detect
occult injuries if stable enough. In cases of blunt
trauma, completion of the spinal survey is imper-
ative. Finally, the scheduled revision surgery is
the last step of the DC strategy and occurs after
12-48 h (sometimes 72 h) of stabilization. The
consensual approach is to consider the second
look when lethal triad is under control. It has two
objectives: the final repair organs (packings
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6 Damage Control Resuscitation

removal, intestinal anastomoses and definitive
vascular repair) and the permanent closure of the
abdomen. One should keep in mind that if a
patient does not normalize haemodynamically or
lactic acid or base deficit fail to improve, the
patient should be taken back to the operating the-
atre earlier for re-exploration. Generally, two
subgroups of patients are seen in this step that
require ‘unplanned’ re-operation before physio-
logical restoration. The first is the group of
patients who have ongoing transfusion require-
ments or persistent acidosis despite normalized
clotting and core temperature. Monitoring of the
clinical (blood pressure, tachycardia, suction
drains, dressings) and biological parameters
(haemoglobin, lactate level) can lead to the deci-
sion to further surgery and/or angiography. These
patients are usually found to have ongoing surgi-
cal bleeding or a missed visceral injury that was
not treated adequately during the initial damage
control operation and have a very high mortality
rate [86]. The second group requiring unplanned
return to the operating theatre have developed
abdominal compartment syndrome defined as
sustained or repeated intravesical pressure above
20 mmHg in the presence of new single or mul-
tiple organ system failure [87]. This could be the
consequence of abdominal trauma which is
accompanied by a visceral oedema and haemato-
mas but also the use of intra-abdominal packing.

Conclusion

The treatment of bleeding remains to stop the
bleeding. DCR is together with DCS part of a
global DC strategy. DCR is a potent tool to
hinder and even reverse the lethal triad.
Delaying bleeding control under the pretext
that DCR is available and effective is a falla-
cious conduct that results in increased mor-
bidity and mortality.
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