

NAVA et sevrage de la ventilation mécanique

Dr PIQUILLOUD Lise

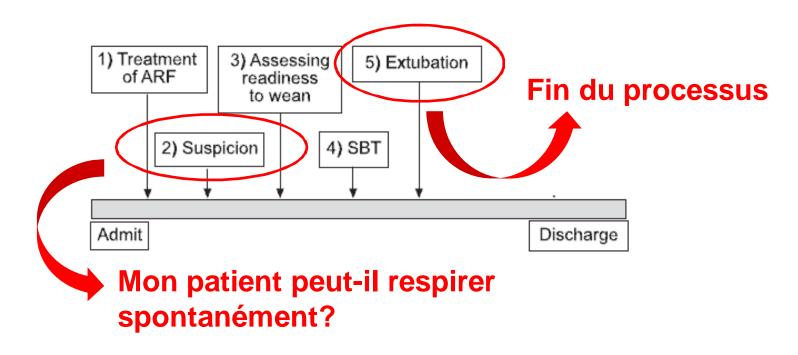
Département de Réanimation Médicale et de Médecine Hyperbare, CHU d'Angers Lise.PiquilloudImboden@chu-angers.fr

Conflits d'intérêts

- Matériel en prêt à Angers (ventilateur Servo-i et Module NAVA) pour une étude physiologique
- ➤ Travail en étroite collaboration avec le laboratoire de ventilation mécanique du CHUV de Lausanne, Suisse qui reçoit ou a reçu des financements de la part des entreprises Draeger Medical, Hamilton et Resmed en rapport avec différents projets de recherche

> INTRODUCTION

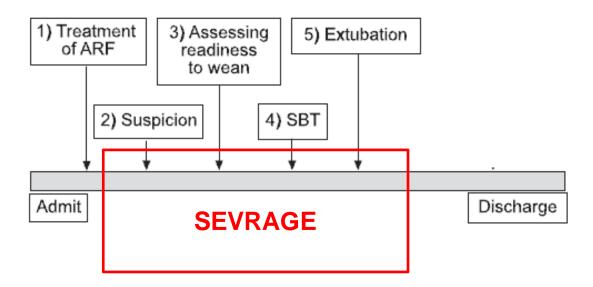
- > Sevrage: définition et enjeux
- Contrôle neural de la respiration


> ROLES POSSIBLES DU NAVA DANS LE SEVRAGE

- Comme mode de sevrage?
- > Comme technique de monitorage?
- > CONCLUSIONS

Sevrage: définition

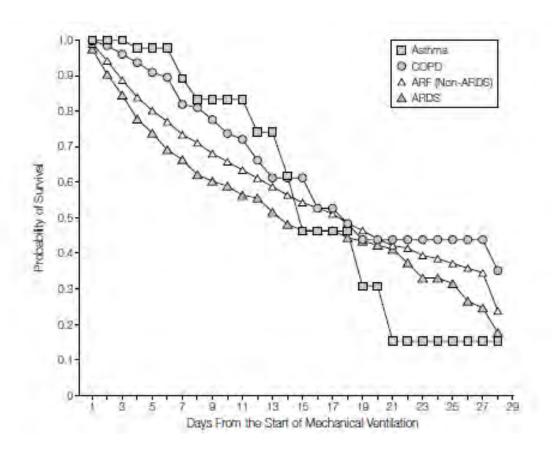
Ensemble du processus aboutissant au retrait du support apporté par la ventilation mécanique et à l'extubation



Boles J-M. et al. European Respiratory Journal (2007); 29: 1033-56

Sevrage: durée

- Processus de sevrage:
 - > 40-50% de la durée totale de ventilation
 - > Le plus souvent réalisé en aide inspiratoire



Boles J-M. et al. European Respiratory Journal (2007); 29: 1033-56

Sevrage: enjeux

→ ↑ durée ventilation → ↑ mortalité

Esteban et al. JAMA (2002); 287:345-55

Sevrage: enjeux

Retard extubation -

↑ pneumonies nosocomiales

↑ durée séjour en réa

↑ durée séjour hospitalier

EXBUTATION DELAY AND OUTCOME

	No Delay	Extubation Delay	p Value
Factor, n (%)	99 (73%)	37 (27%)	
Pneumonia, n (%)	21 (21.2%)	14 (37.8%)	0.048
Intensive care unit length of stay, d	3 (1-15)	8 (3-22)	< 0.001
Hospital length of stay, d	11 (1-39)	17 (3-61)	0.009
Cost, \$ (range)	41,824	70,881	< 0.001
	(6,576-165,994)	(27,051-193,109)	7.7
Mortality, n (%)	12 (12.1%)	10 (27.0%)	0.04
Tracheotomy, n (%)	4 (4.0%)	0 (0.0%)	0.6

Data are presented as medians with ranges shown in parentheses, except when specified.

Coplin WM.Am J Respir Crit Care Med (2000);161:1530-1536

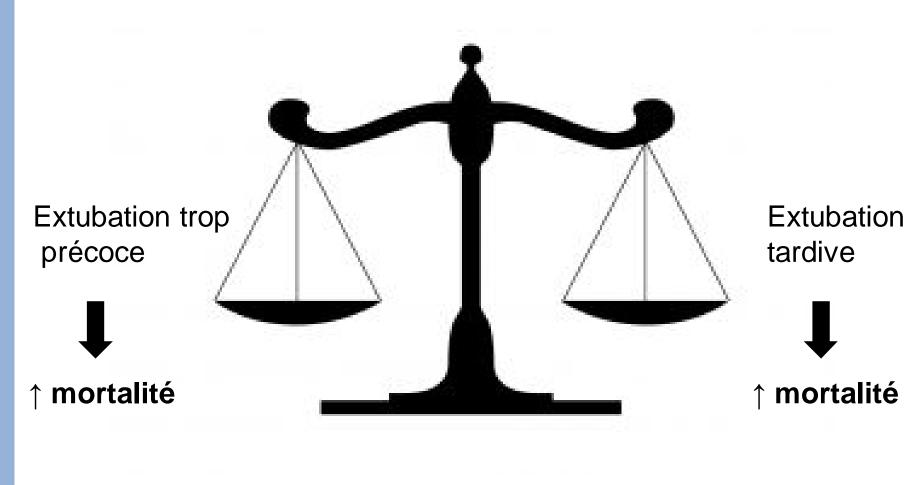
Sevrage: enjeux

Echec extubation associé à:

- ↑ Pneumonies nosocomiales
- ↑ Durée séjour SI
- ↑ Mortalité

Torres A et al.AJRCCM (1995);152:137-141

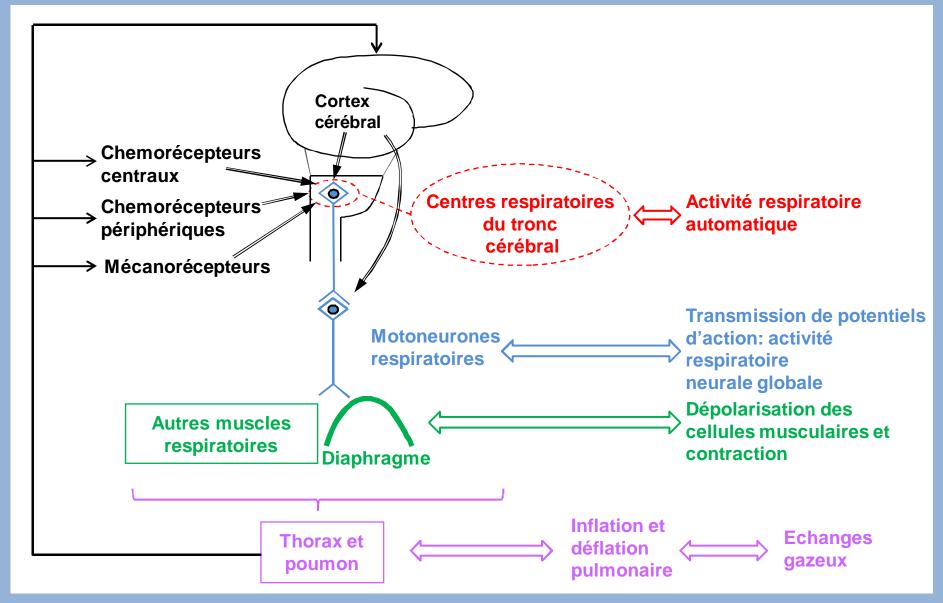
■ ↑ Mortalité: 27 % vs 2.6 %

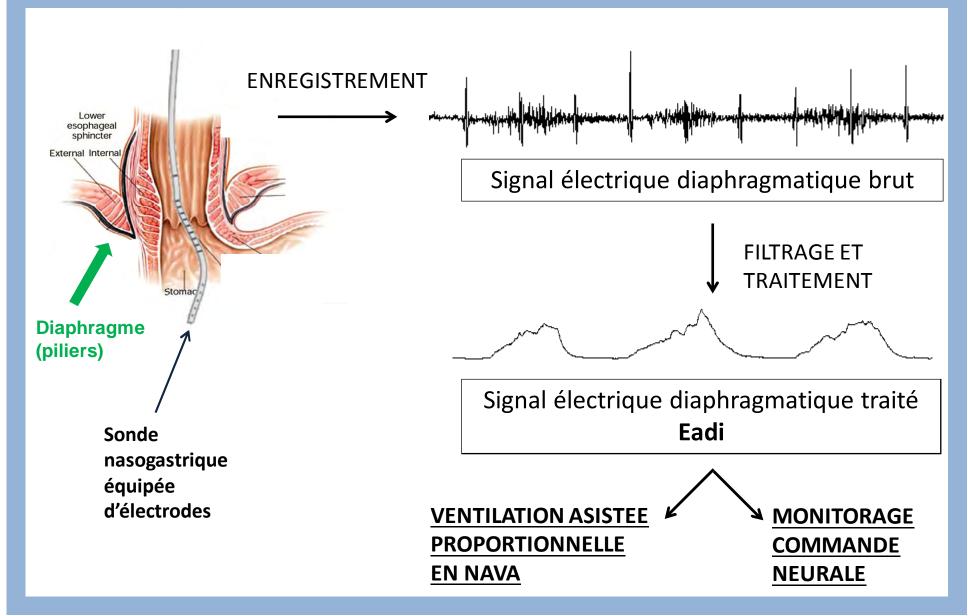

Esteban et al. AJRCCM (1997);156: 459-65

- ↑ Durée séjour SI
- ↑ Mortalité

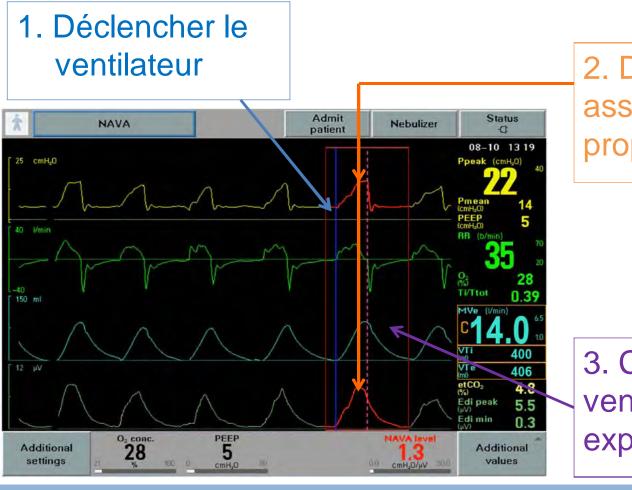
Frutos-Vivar et al. J Crit Care (2011); 26:502-509

Sevrage: un challenge




Respiration: Contrôle neural

En pratique...



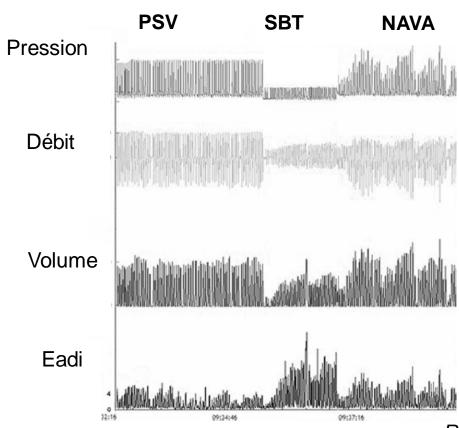
- > INTRODUCTION
 - > Sevrage: définition et enjeux
 - Contrôle neural de la respiration
- > ROLES POSSIBLES DU NAVA DANS LE SEVRAGE
 - > Comme mode de sevrage?
 - > Comme technique de monitorage?
- > CONCLUSIONS

Ventilation en NAVA

2. Délivrer une assistance proportionnelle

3. Cycler le ventilateur en expiration

NAVA: Effets physiologiques


- Amélioration synchronisation patient-ventilateur par rapport à l'Al avec:
 - ↓ Délai de trigger
 - Amélioration synchronisation expiratoire
 - ↓ Nombre total d'asynchronies
 - Absence d'efforts inefficaces /cyclages tardifs

Piquilloud et al. Intensive Care Med 2011(37): 263-71

NAVA: Effets physiologiques

Augmentation par rapport à l'Al de la variabilité du profil respiratoire Schmidt et al. Anesthesiology (2010) 112: 670-681

PSV: Al 16/PEP 5

SBT AI 7 /PEP 0

NAVA Gain 3.5 cmH₂O/μV

NAVA: Effets physiologiques

- Ventilation plus protectrice qu'en Al avec:
 - Volumes courants plus bas (surtout si hauts niveaux d'assistance)
 - Pressions moyennes plus basses

Piquilloud et al. Intensive Care Med (2011);37: 263-71 Spahija et al. Crit Care Med. (2010) 38;518-526 Coisel et al, Anesthesiology (2010);113:925-935

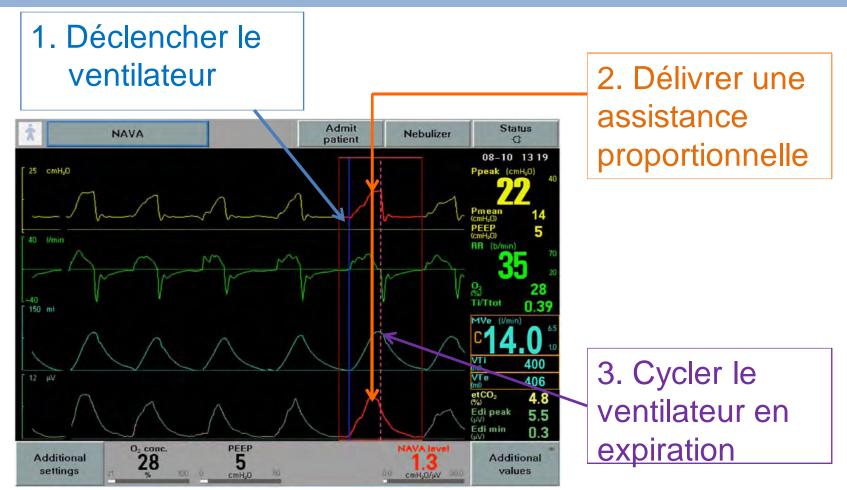
Effet bénéfique sur l'oxygénation

Coisel et al, Anesthesiology (2010);113:925-935

Effets potentiels NAVA

VENTILATION	STANDARD	Références	NAVA	
↑ asynchros	个 Durée ventilation	Thille et al. Intensive Care Med 2006 De Wit et al. Crit care Med 2009	↓ asynchros	Potentiel
个 Variabilité	↑ Probabilité réussite sevrage	Wysoki et al. Crit Care Med 2006	个 Variabilité	pour réduction durée de ventilation
Ventilation protectrice	↓ Durée ventilation et mortalité	ARDS Network. NEJM 2000	Ventilation protectrice	

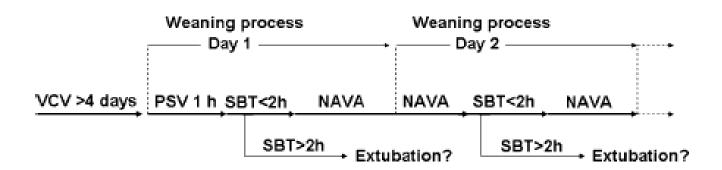
NAVA / Durée ventilation


Sevrage en NAVA vs sevrage en VS/AI c/o 10 nouveaux-nés opérés d'une hernie diaphragmatique → Réduction durée de ventilation par rapport à groupe contrôle historique (9.3 ± 3.3 jours vs 13.0 ± 4.5 jours)

Gentili et al. The Journal of Maternal-Fetal and Neonatal Medicine (2013) 26: 598-602

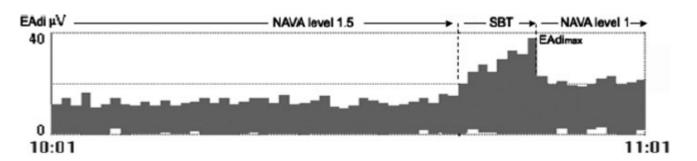
- Pas de donnée disponible c/o population adulte actuellement
- Aucune étude prospective comparant durée de ventilation en NAVA vs autres modes disponible actuellement

Réglage du gain en sevrage...



GAIN NAVA → A REGLER durant le sevrage en NAVA...

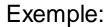
Méthode publiée

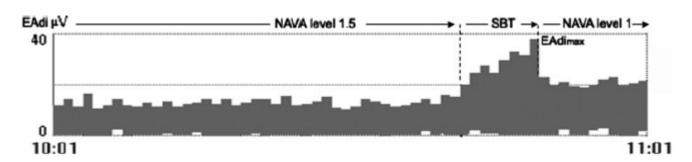


- 1. Passage en Al si cliniquement possible
- 2. Test de ventilation spontanée (Al 7, PEP 0) + détermination Eadi max SBT
 - ✓ Si réussite test → extubation
 - ✓ Si échec test → ventilation en NAVA avec gain pour Eadi max = 60% Eadi max SBT.
- 3. Répétition SBT et adaptation du gain NAVA 1x/jour jusqu'à l'extubation

Méthode publiée

Rozé et al. Intensive Care Med (2011) 37:1087-1094


n	='	1	2
			_


 ^{4.5 [3-6.5]} jours de NAVA

	NAVA dayl	NAVA extubation day	P value
NAVA level (cmH ₂ O/μV)	2.4 (1.0)	1.0 (0.7)	< 0.00001
EAdi _{maxSTB} (μV)	16.6 (9.6)	21.7 (10.3)	0.013
EAdi (µV)	10.0 (5.5)	15.1 (9.2)	0.026
Pimax-PEEP (cmH ₂ O)	20(8)	10 (5)	0.003
VT (ml)	402 (65)	421 (93)	0.391
VT (ml kg ⁻¹ of IBW)	6.9 (1.3)	7.2 (1.5)	0.552
RF (cycles/min)	29 (8)	26 (5)	0.147
pH	7.45 (0.07)	7.46 (0.04)	0.938
PaCO ₂	39.5 (4.8)	39.7 (5.7)	0.873
PaO ₂ /FiO ₂	233 (107)	275 (106)	0.123

Méthode publiée

Rozé et al. Intensive Care Med (2011) 37:1087-1094

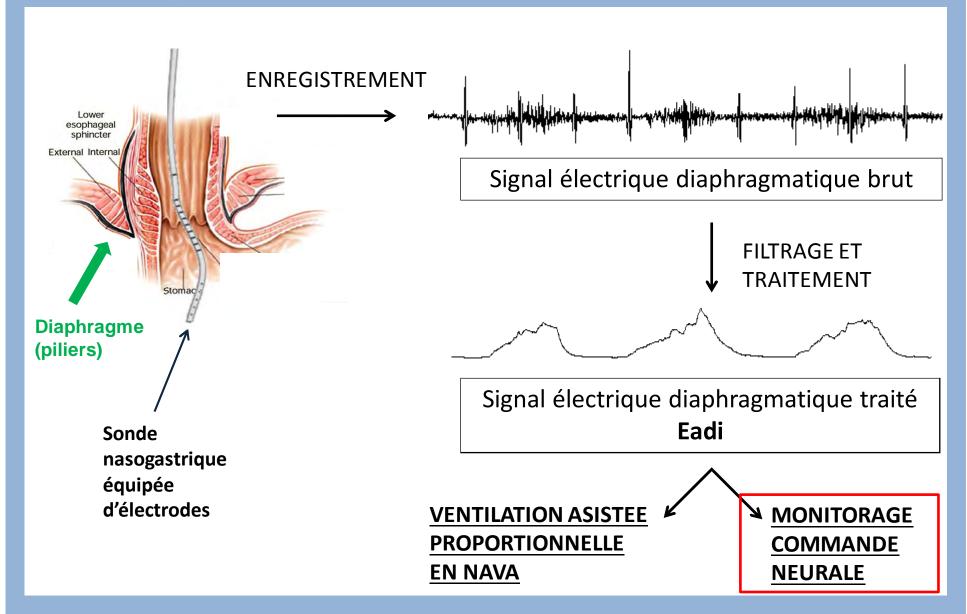
D malus

NIATIA

-	n	='	1	2
		_		_

 ^{4.5 [3-6.5]} jours de NAVA

dayl	NAVA extubation day	P value
2.4 (1.0)	1.0 (0.7)	< 0.00001
16.6 (9.6)	21.7 (10.3)	0.013
10.0 (5.5)	15.1 (9.2)	0.026
20(8)	10 (5)	0.003
402 (65)	421 (93)	0.391
6.9 (1.3)	7.2 (1.5)	0.552
29 (8)	26 (5)	0.147
7.45 (0.07)	7.46 (0.04)	0.938
39.5 (4.8)	39.7 (5.7)	0.873
233 (107)	275 (106)	0.123
	day1 2.4 (1.0) 16.6 (9.6) 10.0 (5.5) 20 (8) 402 (65) 6.9 (1.3) 29 (8) 7.45 (0.07) 39.5 (4.8)	day1 extubation day 2.4 (1.0) 1.0 (0.7) 16.6 (9.6) 21.7 (10.3) 10.0 (5.5) 15.1 (9.2) 20 (8) 10 (5) 402 (65) 421 (93) 6.9 (1.3) 7.2 (1.5) 29 (8) 26 (5) 7.45 (0.07) 7.46 (0.04) 39.5 (4.8) 39.7 (5.7)


NIATIA

- > INTRODUCTION
 - > Sevrage: définition et enjeux
 - Contrôle neural de la respiration
- > ROLES POSSIBLES DU NAVA DANS LE SEVRAGE
 - > Comme mode de sevrage?
 - > Comme technique de monitorage?
- > CONCLUSIONS

En pratique...

Eadi et outcome sevrage

Test sevrage	SEVRAGE REUSSI	ECHEC SEVRAGE	Population	Références
CPAP 5 cmH ₂ O	↑ légère Eadi VT/Eadi = élevé	个个 Eadi VT/Eadi = bas	Tout venant. Adultes (n=52)	Liu et al. Crit Care 2012

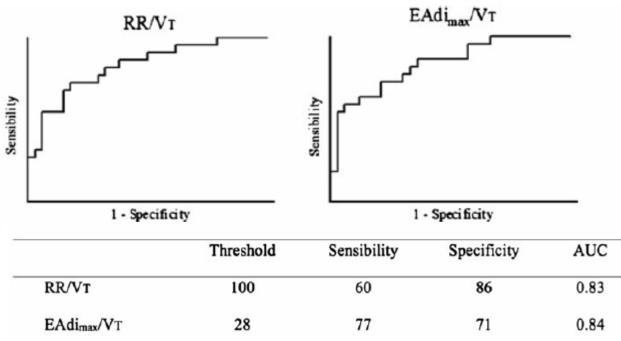
VT/Eadi = « Neuro-ventilatory efficiency »

Eadi et outcome sevrage

Test sevrage	SEVRAGE REUSSI	ECHEC SEVRAGE	Population	Références
CPAP 5 cmH ₂ O	↑ légère Eadi VT/Eadi = élevé	个个 Eadi VT/Eadi = bas	Tout venant. Adultes (n=52)	Liu et al. Crit Care 2012
VS/AI AI 7 cmH ₂ O PEP 0 cmH ₂ O	个 légère Eadi VT/Eadi = élevé	个个 Eadi VT/Eadi max= bas	Tout venant Adultes (n=57)	Dres et al. Intensive Care Med 2012

VT/Eadi = « Neuro-ventilatory efficiency »

Eadi et outcome sevrage


Test sevrage	SEVRAGE REUSSI	ECHEC SEVRAGE	Population	Références
CPAP 5 cmH ₂ O	↑ légère Eadi VT/Eadi = élevé	个个 Eadi VT/Eadi = bas	Tout venant. Adultes (n=52)	Liu et al. Crit Care 2012
VS/AI AI 7 cmH ₂ O PEP 0 cmH ₂ O	个 légère Eadi VT/Eadi = élevé	个个 Eadi VT/Eadi max= bas	Tout venant Adultes (n=57)	Dres et al. Intensive Care Med 2012
Pièce en T	个 légère Eadi VT/Eadi = élevé	个个 Précoce Eadi VT/Eadi= bas	Sevrage difficile. Adultes. (n=18)	Barwing et al. Critical Care 2013

VT/Eadi = « Neuro-ventilatory efficiency »

Prédictif?

- → VT/Eadi bas durant SBT → prédit échec de sevrage
- Prédiction pas supérieure au FR/VT

Dres et al. Intensive Care Med 2012(38): 2017-2025

Et maintenant?

Amplitude Eadi variable d'un patient à l'autre (raisons anatomiques)

Beck et al. J Appl Physiol (1998); 85: 1123-1134

- → Intérêt d'une normalisation? Comment?
- Description d'une nouvelle méthode permettant d'évaluer l'effort patient à partir de l'Eadi et d'une occlusion téléexpiratoire
 - →Intérêt pour prédiction réussite/échec sevrage?

 Bellani et al.Critical Care Medicine (2013); 41:1483-1491
- Ad nouvelles études...

- > INTRODUCTION
 - > Sevrage: définition et enjeux
 - Contrôle neural de la respiration
- > ROLES POSSIBLES DU NAVA DANS LE SEVRAGE
 - > Comme mode de sevrage?
 - > Comme technique de monitorage?
- > CONCLUSIONS

En résumé...

- NAVA → Peut être utilisé pour le sevrage de la ventilation mécanique
- Technologie NAVA = Monitorage pouvant potentiellement faciliter la prédiction de la réussite /de l'échec de l'extubation
- NAVA et ou monitorage Eadi → Effet potentiel sur la réduction de la durée de ventilation

En conclusion...

« I would join with the authors of multiple smaller physiologic studies to call for appropriately powered, prospective RCTs comparing the effects of conventional ventilation and NAVA on important patient outcomes »

Kathy S Myers Moss

Correspondance Respiratory Care, November 2013, VOL 58, e155

> QUESTIONS?

