La Pré-oxygénation en 2014

Lydia Lequette-Morel, Karine Nouette-Gaulain

• Pourquoi?

Qui?

• Comment?

POURQUOI POURQUOI POURQUOI POURQUOI POURQUOI 77777

Survey of Anesthesia-related Mortality in France

André Lienhart, M.D.,* Yves Auroy, M.D.,† Françoise Péquignot,‡ Dan Benhamou, M.D.,\$ Josiane Warszawski, Ph.D., M.D.,|| Martine Bovet,# Eric Jougla, Ph.D.**

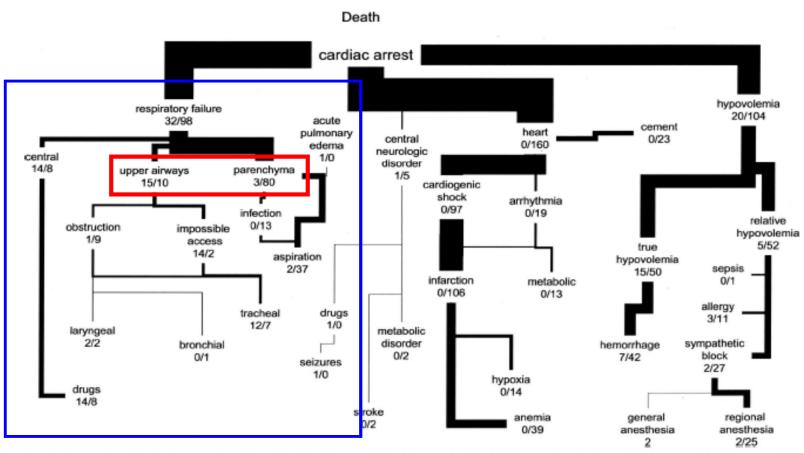
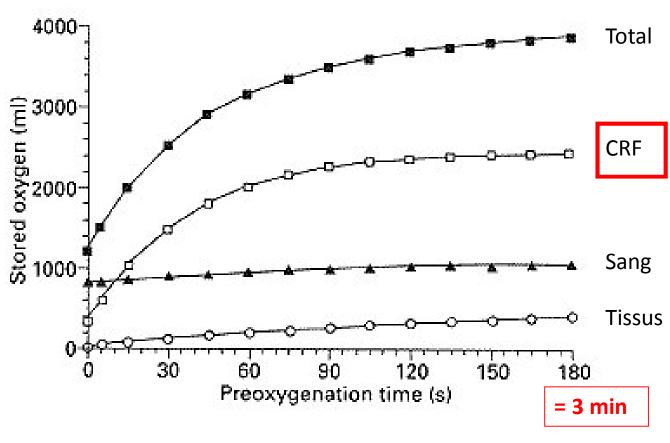


Fig. 4. Pathophysiologic description ("tree") of main events leading to deaths totally and partially related to anesthesia. The width of each line indicates the relative contribution of a given mechanism (number of cases totally related/partially related to anesthesia).

Déplacement progressif vers le haut du diaphragme Position initiale du diaphragme Pab Position couchée Induction de Paralysie (Curares) l'anesthésie Position chirurgicale et déplacement

Perméabilité des VAS et Anesthésie


- Effets des anesthésiques
 - Tonus de base : hypotonie (dose dépendante)
 - Asynchronisme diaphragme et VAS
 - Palais mou, pharynx et larynx
- Facteurs anatomiques
 - Obésité, SAS, œdème
 - Pathologie des VAS
 - Obstruction pré-anesthésique des VAS

Oxygénation et intubation

Préoxygénation en ventilation spontanée

- Manœuvres réalisées avant l'intubation pour augmenter les réserves en O₂
- Augmente le temps d'apnée

In full oxygen (FiO₂=1), oxygen storage increase mainly in lung compartment

O₂ storage volume variation

• Pourquoi?

Qui?

• Comment?

Conférence d'experts d'intubation difficile

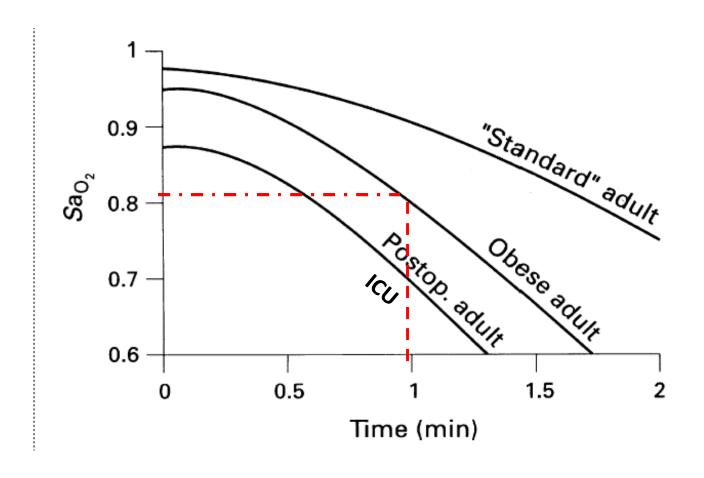
Sous l'égide de la SFAR, de la SRLF, de la SFMU, de l'ADARPEF, du CARO et du CARORL 2006

Qui préoxygéner?

Tous les patients et plus particulièrement:

- ID ou VMD prévus (grade C)
- Dans cadre de l'urgence (grade E)
- Patients avec risque de désaturation pendant
 l'intubation (grade E)

Conférence d'experts d'intubation difficile


Sous l'égide de la SFAR, de la SRLF, de la SFMU, de l'ADARPEF, du CARO et du CARORL 2006

Facteurs de risque de désaturation pendant l'intubation

- Intubation en urgence avec ISR
- Difficulté de ventilation au masque prévisible
- •Intubation présumée difficile
- Obésité et grossesse
- •Enfant <1an</p>
- ASA classe 3 ou 4
- Syndrome apnée du sommeil
- Infection des VAS (ICU)
- Sujet âgé
- Broncho-pneumopathie obstructive (ICU)

From a modeling, less than 60 seconds of apnea are sufficient to obtain SaO₂ < 80%

Patients hypoxiques de réanimation Plusieurs facteurs prédictifs de mauvaise tolérance de l'apnée

- Réduction des volumes pulmonaires (FRC, VT...)
- Diminution du rapport ventilation/perfusion shunts (VA/Q)
- Hb basse(Hb)
- Augmentation de la consommation d'oxygène(VO₂)
- Conditions d'urgences

Preoxygenation in critically ill patients requiring emergency tracheal intubation*

Thomas C. Mort, MD

Crit Care Med 2005

Evolution of PaO₂ after 4 minutes of preoxygenation

	Planned surgery (n=34)	ICU (n=42)
T0 T+4min	79 ± 12 404 ± 72	67 ± 20 104 ± 63
Δ Moyenne	325	37

	Neuro (n=8)	Hypoxia (n=34)
Т0	81 ± 8	64 ± 4
T+4min Δ Moyenne	186 ± 21 105	87 ± 10 22

Chez la parturiente (réduction marquée de la CRF)

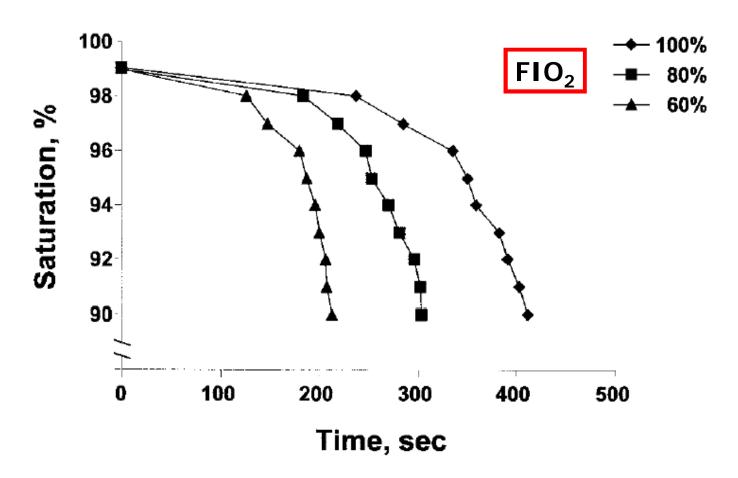
- Dénitrogénation (FeN₂=2%)
 - -104 ± 30 sec entre 13-26 semaines
 - -80 ± 20 sec entre 26-42 semaines
 - 130 \pm 30 sec chez la femme jeune en dehors de la grossesse.
- La VS O₂ pur 3 minutes = 4 CV 30 sec
 - Norris MC, *Anesthesiology* 1985;62:827-9)
- Certaines femmes (surtout si elles sont obèses) ont des durées d'apnée ≈ 60 sec (Bernard F, Ann Fr Anesth Réanim 1994;13:2-5)

• Pourquoi?

• Qui?

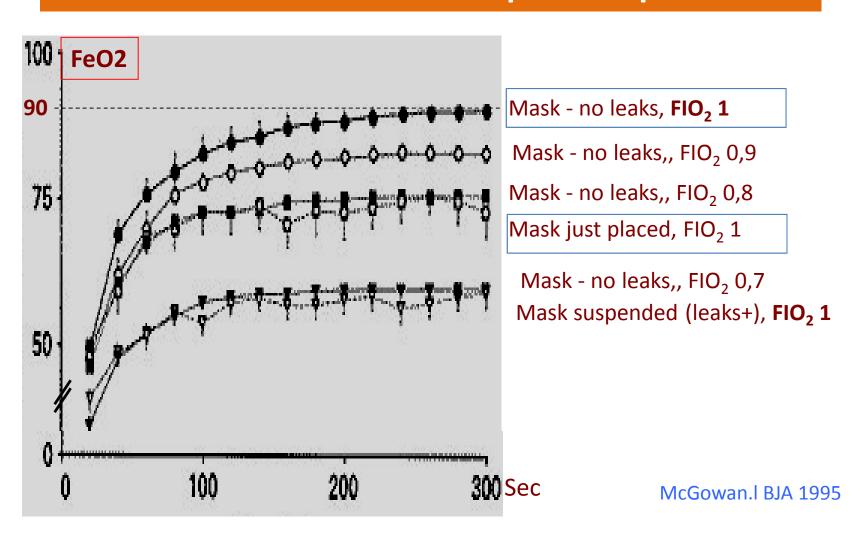
• Comment?

Conférence d'experts d'intubation difficile


Sous l'égide de la SFAR, de la SRLF, de la SFMU, de l'ADARPEF, du CARO et du CARORL 2006

Comment réaliser une préoxygénation ? (1/3)

- Les manœuvres de préoxygénation doivent être réalisées rigoureusement (grade D)
 - •Étanchéité du masque (FiO₂)
 - Débit gaz adéquate 10 à 151/min
 - ·Ballon capacité adaptée
- Surveillance par monitorage de <u>la FeO₂</u> est
 recommandée en anesthésie (obj >90%) (grade E)
- Monitorage SpO₂ est recommandé (grade E)

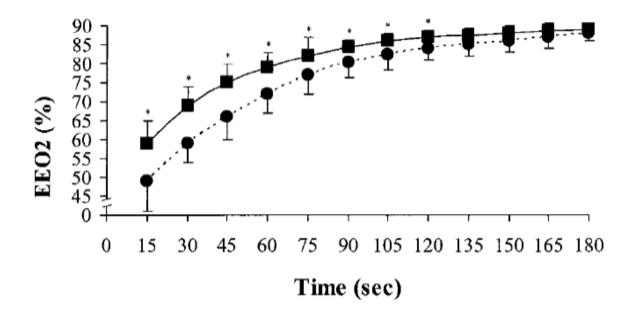

Quelle FIO₂?

Plus la FIO₂ est basse, plus la durée d'apnée est courte

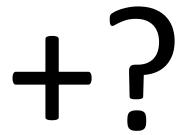
FIO₂: paramètre majeur à optimiser

L'étanchéïté entre le masque et le patient

Temps de désaturation (sec)


Auteur	Patient	<u>-</u>	4 CV	3 min VS
		mini		O_2 pur
Gambee	Normal	90%	408 ± 108	534 ± 60
			167 ± 23	224 ± 46
Valentine				406 ± 75
McCarthy	Vieillard	93%	222 ± 96	324 ± 102

4 CV PAS assez!!

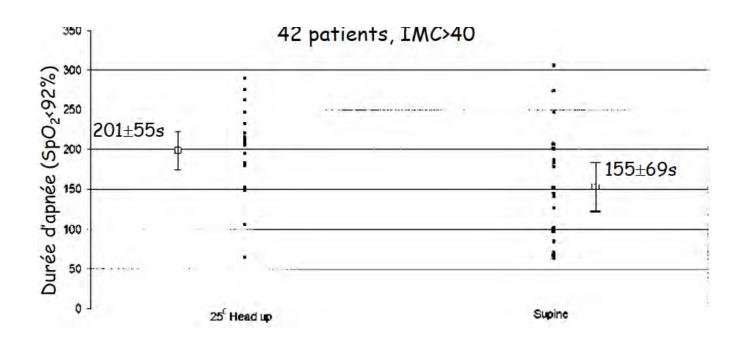

Optimiser la Pré-oxygénation en VS

Préoxygénation en vs 3 min, 10l/min

VS simple versus exsufflation forcée ■avant 3min (*P 0.05)

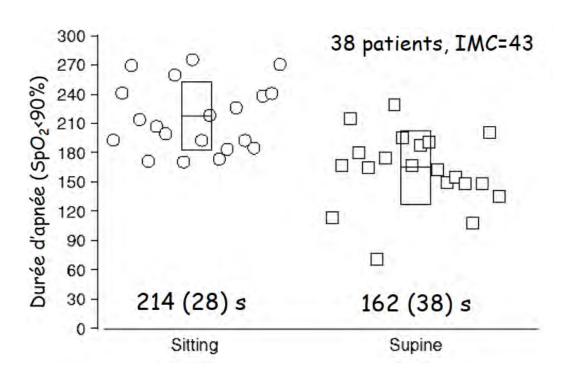
3 min VS avec FIO₂ 1

- Position
- VNI
- MR


Position du malade

 Les limites de la pré-oxygénation en décubitus dorsal strict

- Difficile de réaliser des CV
- Collapsus des zones postérieures des poumons


Position du malade

3 min, Proclive + 25° Obésité Morbide (body mass index > 40 kg/m)

Position du malade

PROCLIVE 90° 8 CV avec 10L/min



Préoxygénation en CPAP

Prévention des atélectasies

VS 5 min FIO2 1

CPAP 6 cm H2O

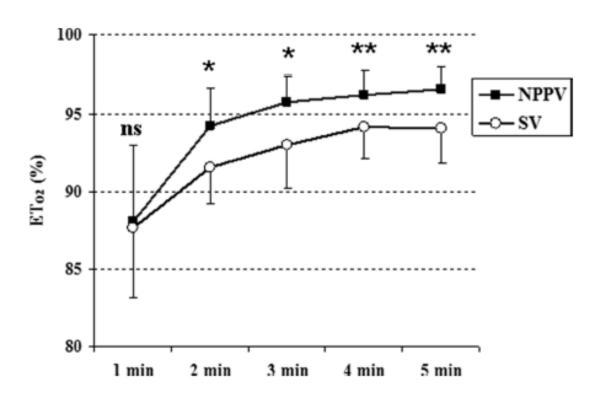

Avant induction

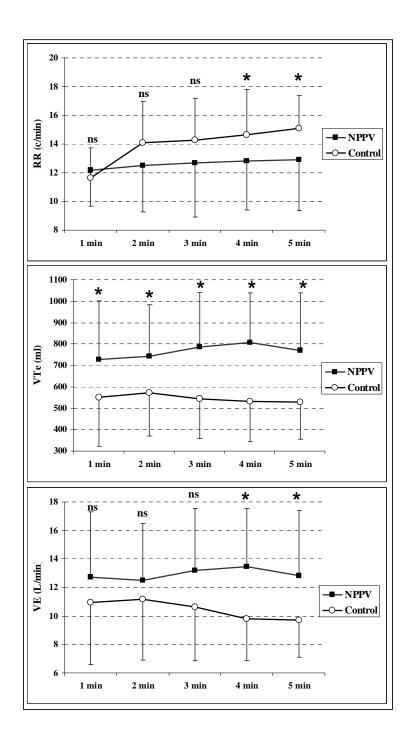
Après intubation

Obèse et Préoxygénation

Chirurgie programmée Obèse Peut on optimiser la préoxygénation

Standard (ballon)


NIV (PSV+PEEP)-preOxy



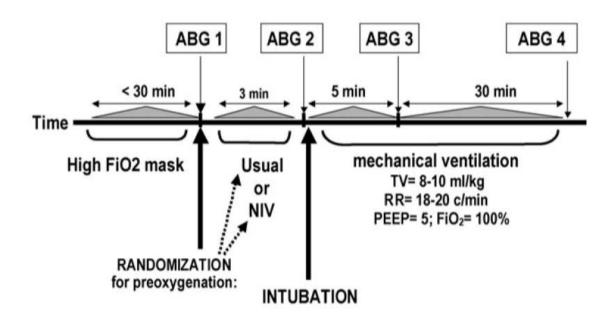
Delay, ...Jaber . Anesth-Analg 2008

Obèse et Préoxygénation

Optimisation de la FEO₂

5min FIO2 1 VS (FGF 18L/min) versus AI 8 cm H2O+PEEP 6 cm H2O

FR stable, VT augmenté


Noninvasive Ventilation Improves Preoxygenation before Intubation of Hypoxic Patients

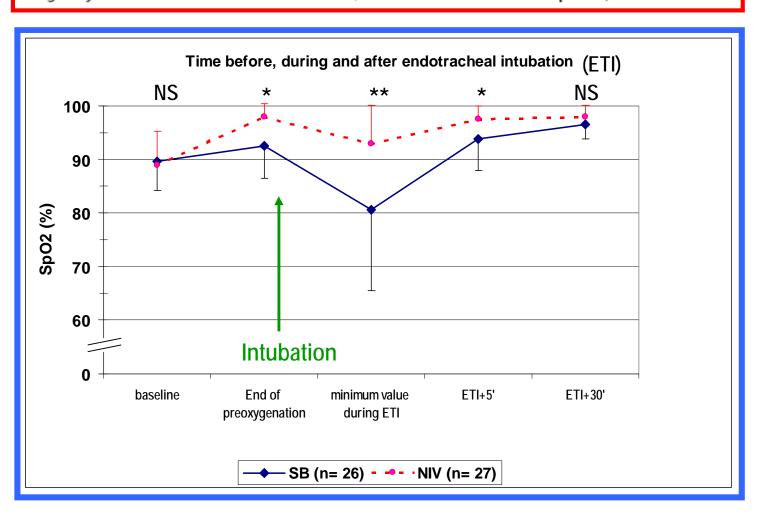
Christophe Baillard, Jean-Philippe Fosse, Mustapha Sebbane, Gérald Chanques, François Vincent, Patricia Courouble, Yves Cohen, Jean-Jacques Eledjam, Frédéric Adnet, and Samir Jaber

Department of Anesthesiology and Intensive Care, and SAMU 93, Avicenne Hospital, EA 3409, Paris 13 University—AP-HP, Bobigny; Intensive Care Unit, Department of Anesthesiology, DAR B University Hospital of Montpellier, and Saint Eloi Hospital, Montpellier University, Montpellier, France

Am J Respir Crit Care Med Vol 174. pp 1–7, 2006

Originally Published in Press as DOI: 10.1164/rccm.200509-1507OC on April 20, 2006

VS: 10 à 15L/min

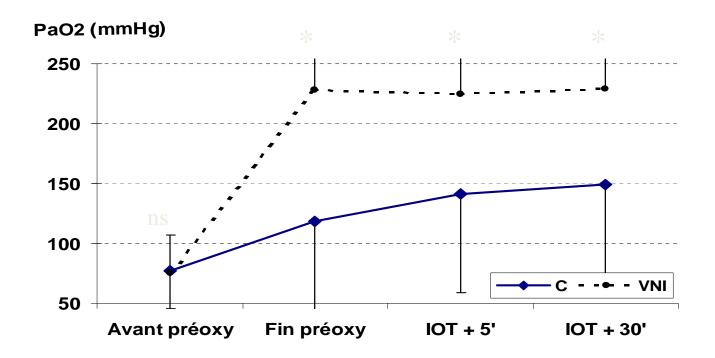

NIV: AI qsp VT 7-10 ml/kg, PEEP 5 cm H2O

Noninvasive Ventilation Improves Preoxygenation before Intubation of Hypoxic Patients

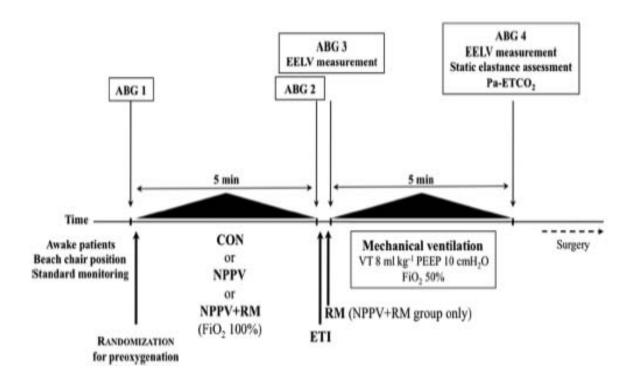
Christophe Baillard, Jean-Philippe Fosse, Mustapha Sebbane, Gérald Chanques, François Vincent, Patricia Courouble, Yves Cohen, Jean-Jacques Eledjam, Frédéric Adnet, and Samir Jaber

Department of Anesthesiology and Intensive Care, and SAMU 93, Avicenne Hospital, EA 3409, Paris 13 University–AP-HP, Bobigny; Intensive Care Unit, Department of Anesthesiology, DAR B University Hospital of Montpellier, and Saint Eloi Hospital, Montpellier University, Montpellier, France

Am J Respir Crit Care Med Vol 174. pp 1–7, 2006 Originally Published in Press as DOI: 10.1164/rccm.200509-1507OC on April 20, 2006



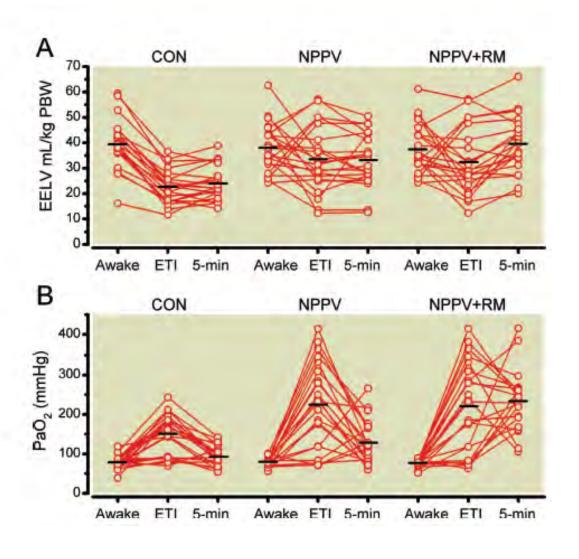
Noninvasive Ventilation Improves Preoxygenation before Intubation of Hypoxic Patients


Christophe Baillard, Jean-Philippe Fosse, Mustapha Sebbane, Gérald Chanques, François Vincent, Patricia Courouble, Yves Cohen, Jean-Jacques Eledjam, Frédéric Adnet, and Samir Jaber

Department of Anesthesiology and Intensive Care, and SAMU 93, Avicenne Hospital, EA 3409, Paris 13 University–AP-HP, Bobigny; Intensive Care Unit, Department of Anesthesiology, DAR B University Hospital of Montpellier, and Saint Eloi Hospital, Montpellier University, Montpellier, France

Am J Respir Crit Care Med Vol 174. pp 1–7, 2006 Originally Published in Press as DOI: 10.1164/rccm.200509-1507OC on April 20, 2006

Intérêt des manœuvres de recrutement



CON: 5 min FIO2 1, 15l/min

NPPV: AI qsp VT 8ml/kg + PEEP (6-8 cm H2O)

RM: 40 cm H2O durant 40 sec

Intérêt des MR

Les échecs

1050 patients, 1 an Préoxygénation 3min, 12L/min FEO2< 90% dans 56% des cas

Facteurs de Risque d'un échec de pré-oxygénation. Analyse multivariée

	Odds Ratio	Intervalles de confiance à 95%	р
Age > 55 ans	1,5	[1,1-2,2]	0,015
Sexe Masculin	1,9	[1,4-2,5]	< 0,001
Edenté(e)	2,4	[1,4-4]	0,001
Barbe	6,7	[2-22]	0,002
ASA 4	9,9	[1,3-79]	0,03

POURQUOI POURQUOI POURQUOI POURQUOI POURQUOI 77777

TAKE HOME MESSAGE

Question n°1: Why?

Prévenir l'hypoxémie

Question n°2: Who?

Tous dont ceux à risque élevé

Question n°3: how to improve?

- •VNI or CPAP avant l'intubation: prévientles complicationq
- Manœuvres de recrutement et PEEP après intubation