

Actualités en anesthésie

Anesthésie par inhalation : quoi de neuf?

Dr Valérie BILLARD

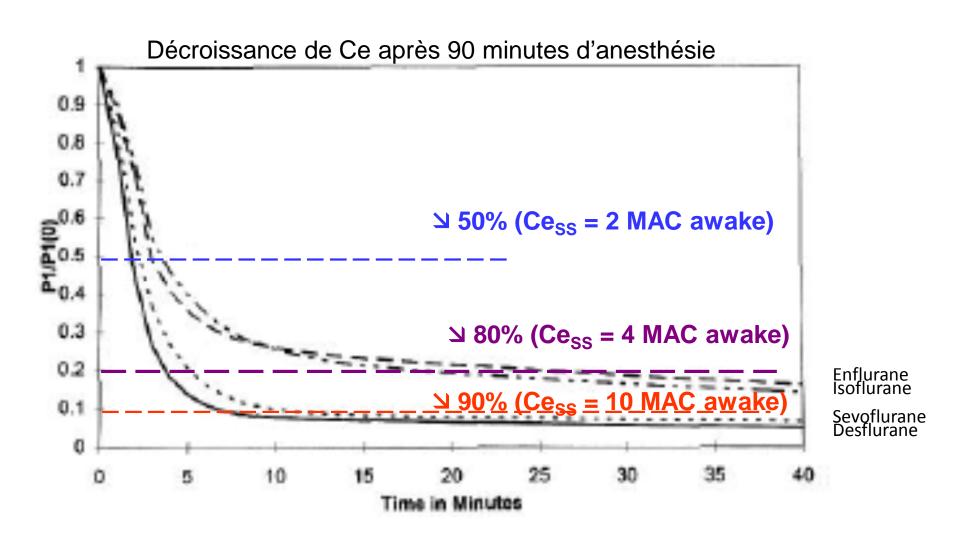
Conflits d'intérêt

- Symposia, consultations, relectures de brochures
 - Fresenius
 - Cardinal Health
 - Drager Medical
 - Datex GE
 - Baxter

Anesthésiques Volatils : ce qui n'est pas nouveau...

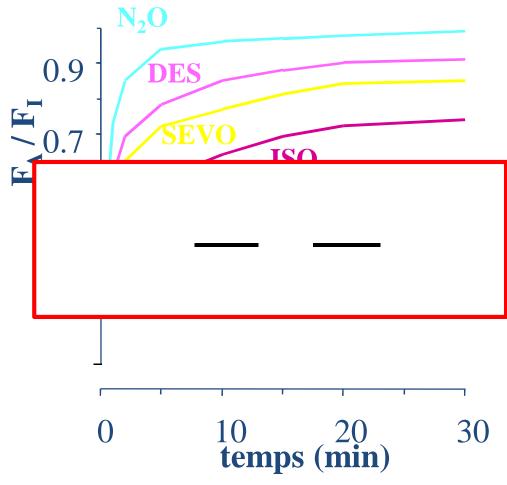
Halogénés : propriétés

- Effets attendus
 - Inhibent la réponse (motrice) aux stimulations
 - Induisent la perte de conscience
- Effets secondaires
 - NVPO
 - Hyperthermie maligne
 - Toxicité hépatique ou rénale ?
- Conditions d'utilisation
 - Administration facile
 - Pollution
 - Contraintes machine (circuit fermé, CO₂)
- Différences pharmacologiques
 - Irritation des V.A.S.: DES, ISO > SEVO, HAL
 - Dépression myocardique : HAL >> ISO > SEVO, DES
 - Hypotension : SEVO, ISO > DES
 - Tachycardie : DES > SEVO, ISO


Schwilden & Schuttler. Handbook Exp. Pharmacol: Modern anesthetics. Springer 2007

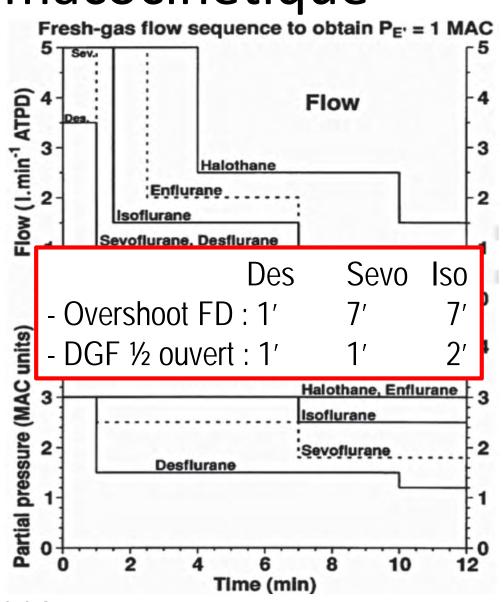
Administration des halogénés : Raisonner à Objectif de Concentration

- La profondeur d'anesthésie est corrélée à la concentration du SNC (Ce)
- Ce s'équilibre rapidement avec la concentration sanguine (Cp)
- $^{\circ}$ A l'équilibre, Cp est équilibrée avec la fraction alvéolaire (F_A)
- F_A peut être estimée par la mesure de F_{ET}
- **8** Contrôler *FA* (*F_{ET}*) ≈ Contrôler Ce ⇒ Contrôle l'intensité des effets


Délai de réveil

Rapide sauf à haute concentration et pour les agents les + solubles

Bailey, Anesth Analg 1997


Halogénés: pharmacocinétique

Deriaz, JEPU 1998

Quenent Ann Fr Anesth Réan 2009

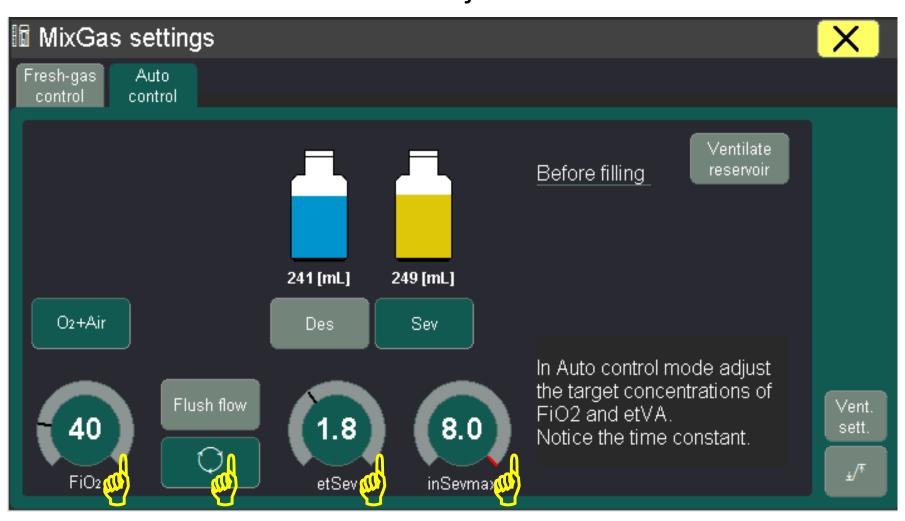
Hendricks, Handb Exp Pharmacol 2008

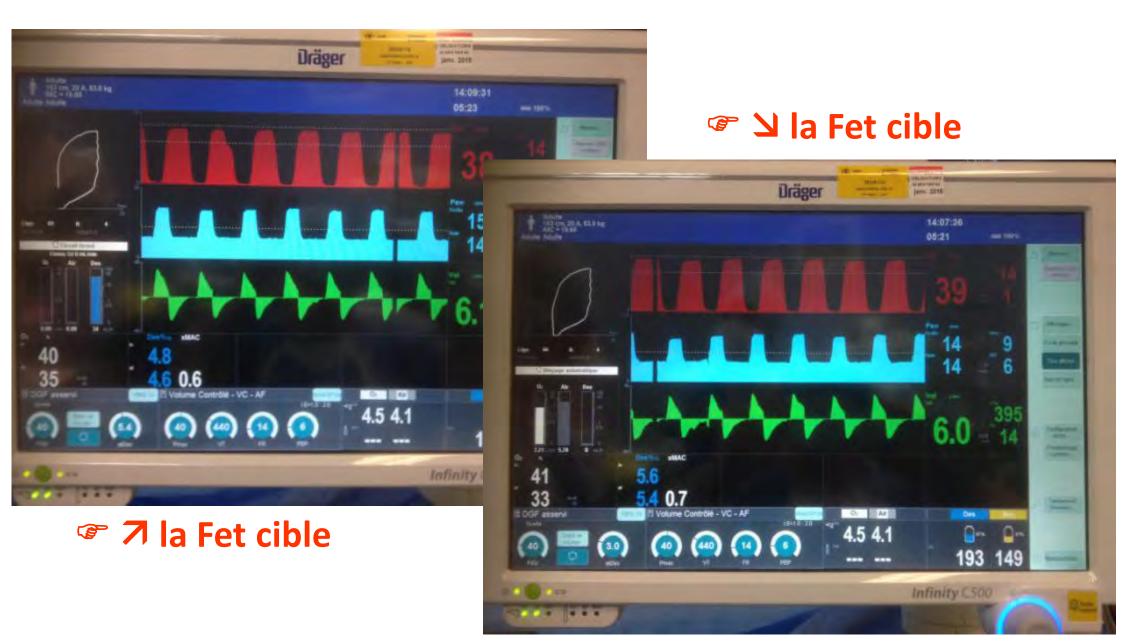
Anesthésie Inhalée à Objectif de Concentration

Anesthésie INhalée à Objectif de Concentration

Zeus Mode asservi Felix AlnOC **Aisys** ET control

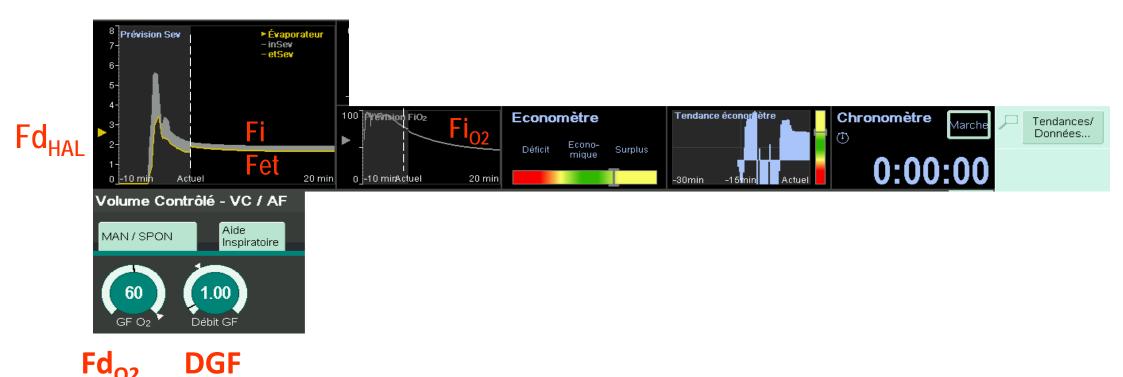
Flow-Automatic Gas Control



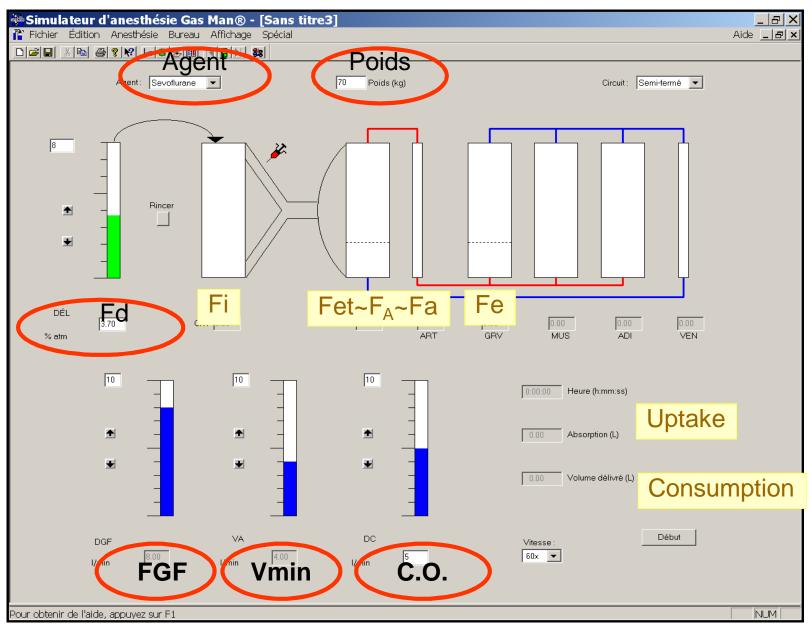


Halogénés:

mode asservi = autocontrol =
Anesthésie INhalée à Objectif de Concentration

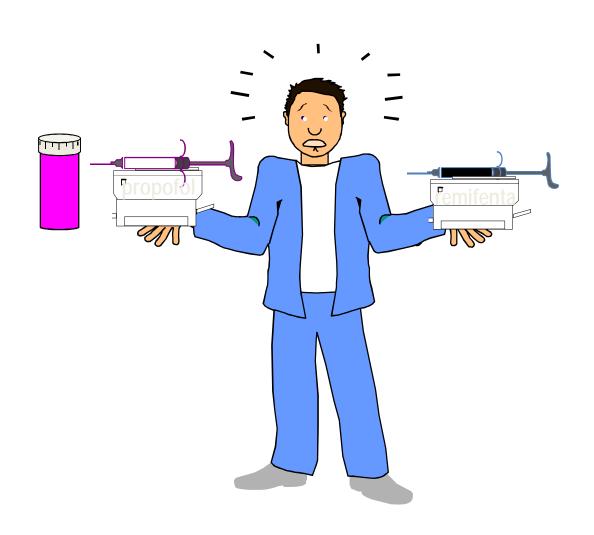

AlnOC: vous donnez la consigne, la machine d'anesthésie l'atteint

Le DGF est asservi à la F_{O2} choisie

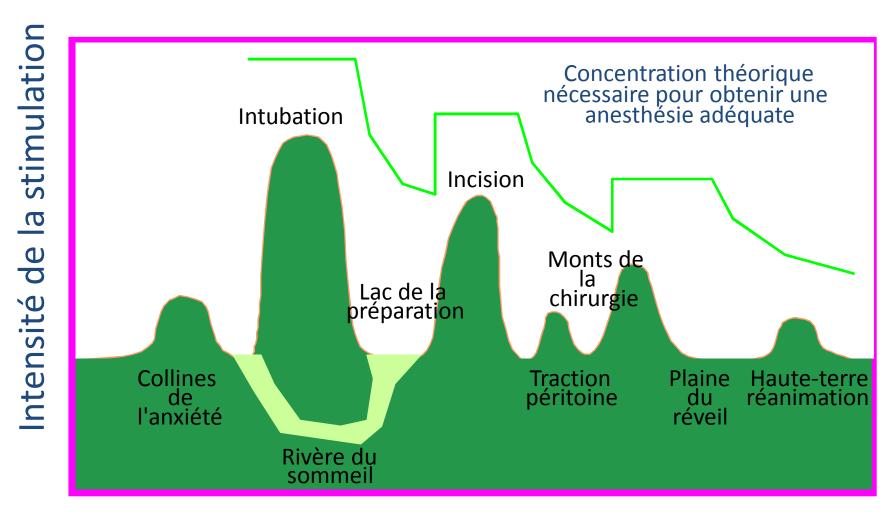

Vous n'avez pas d'AINOC... Avez-vous la fonction Vapor View?

La prédiction du futur guide le réglage de DGF, Fd_{HAL} et Fd_{O2}

Off line simulation: Gasman®



Conversion factor
Liquid → vaporr
Sevoflurane: x 183
Desflurane: x 209


Isoflurane: x 196

Mon patient va-t-il mémoriser / réagir?

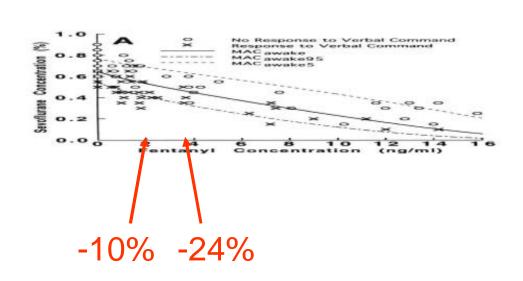
La concentration minimum nécessaire dépend: 1. du niveau de stimulation nociceptive

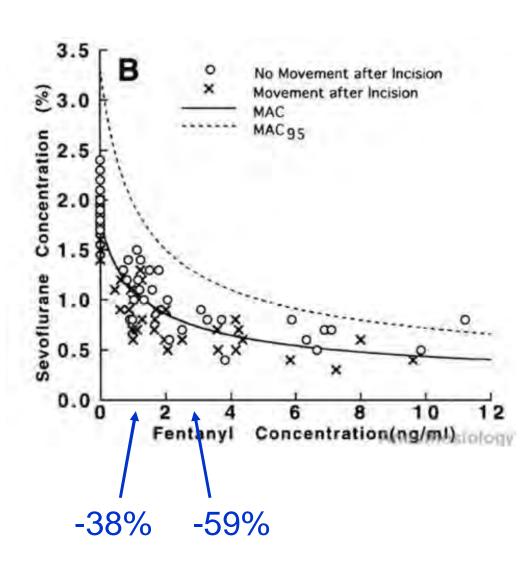
d'après PSA Glass et al., Anesthesia, 3rd ed.

2. De l'agent choisi et de l'effet recherché

■ REVIEW ARTICLE

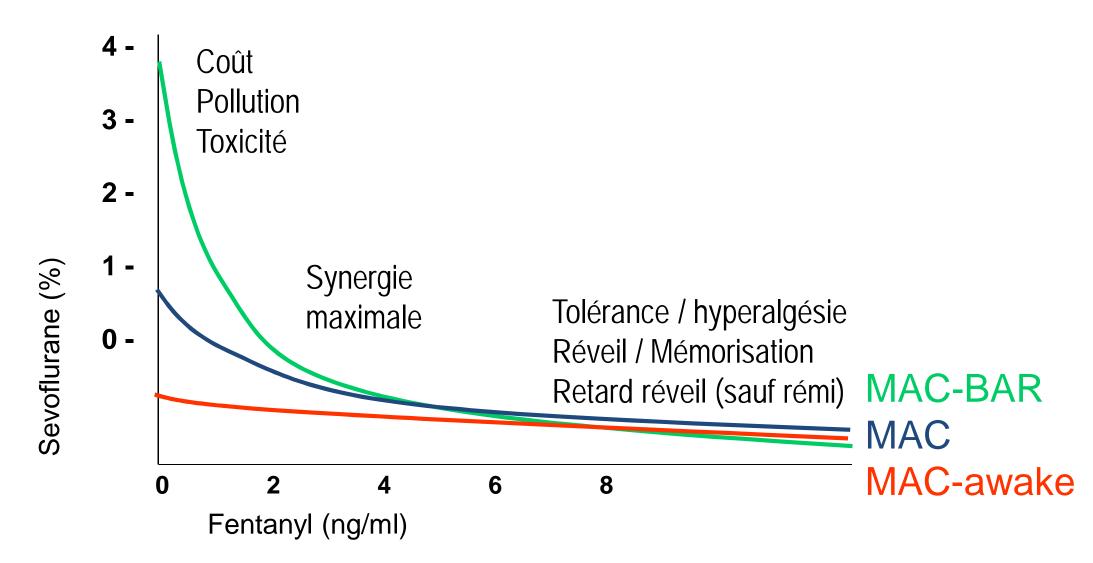
Anesthesiology 80:906-922, 1994


New Inhaled Anesthetics


Edmond I. Eger II, M.D.

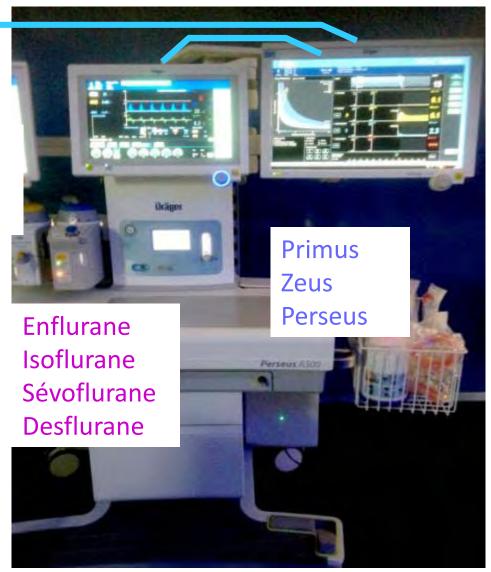
	MAC (%)	MAC-BAR	MAC-awake
	[30-60] ans	(%)	(%)
Desflurane	6.0		
Sevoflurane	2.0		
N2O	105	~1.5 MAC	~ 0.3-0.4 MAC
Isoflurane	1.15		
Enflurane	2.0		
Halothane	0.75		

Eger, Anesthesiology 1994 Roizen, Anesthesiology 1981


3. De l'effet et du morphinique

Katoh, Anesthesiol 1998

Quelle F_A choisir?


Aide à la décision : Smart Pilot ViewTM

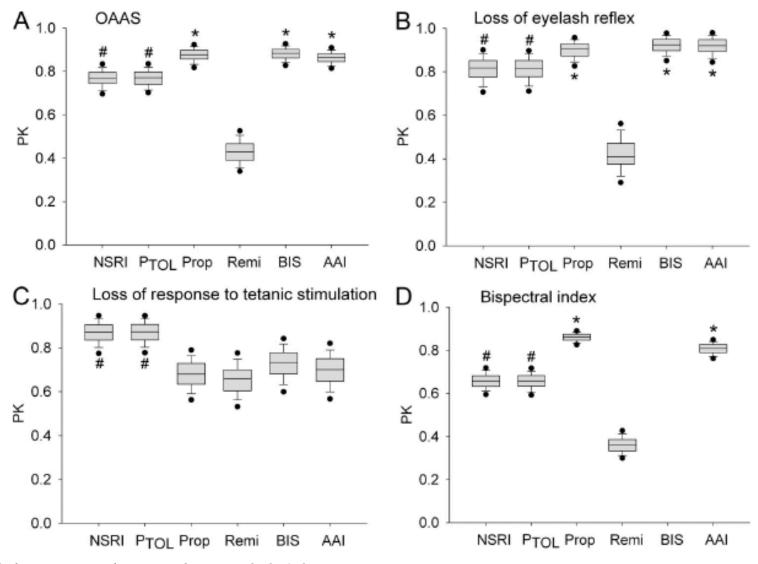
PSE

- Carefusion Alaris
- Fresenius Base Primea
- Terumo Terufusion
- Propofol
- Rémifentanil
- Sufentanil
- Alfentanil
- Fentanyl
- Rocuronium
- Pancuronium

Machine d'anesthésie

Plateforme C700

Smart Pilot View


SPV: 2 échelles

Induction au sevoflurane

SPV / NSRI : l'expérience de Bern

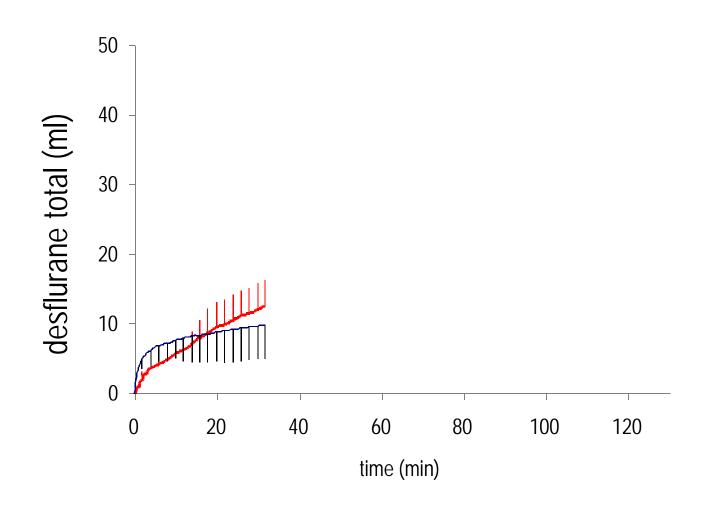
Luginbuhl, Anesthesiology 2010

IRSN pendant chirurgie

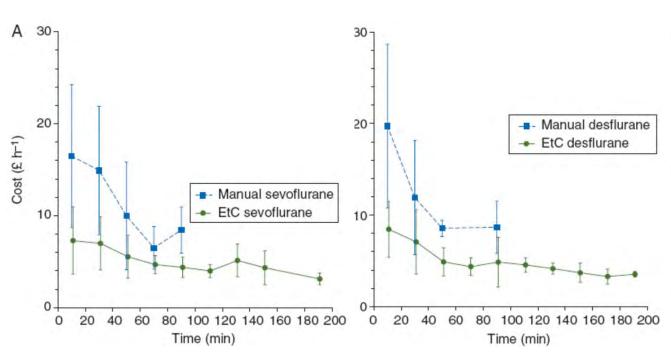
- Chirurgie carcinologique : abdominale (laparo/cœlio), thyroïde, sein
- Ajustement libre des cibles
 - Hypnotique ← clinique ou BIS, Rémifentanil AIVOC ← PA / FC
- Pendant la chirurgie, recueil des :
 - Concentrations d'H/R considérées optimales + co-analgésiques éventuels (APD)
- Calcul a posteriori de l'IRSN, comparaison des types de chirurgies

Chirurgie	Péridurale	Rémifentanil (ng/ml)	ET Desflurane (%)	ET sévoflurane (%) ou propofol (µg/ml)	ISRN
V122221232127	non	2.7±0.5	4.8 ± 0.9		6±8
Laparoscopie	oui	1.6 ± 0.5	3.6 ± 0.5		25 ± 23
Laparotomie	non	2.6 ± 1.1	4.8 ± 1.1		7±11
	oui	0.8 ± 0.6	4.1 ± 0.9		42±31
Thyroïde	non	2.5 ± 0.7	4.8 ± 0.4	1.6 ± 0.4	9 ± 16
Tumorectomie (sein)	non	2.5 ± 0.7		1.8±0.5/4±1	22 ± 19

Aides à l'ajustement des agents anesthésiques : gadget ou révolution?


AlnOC: précision du contrôle

	T50% (sec) Desflurane / Sevoflurane	AUC _{ET} / AUC _{set} (%) Desflurane / Sevoflurane
Aisys	92 / 84	95 / 91
Zeus	51 / 56	99 / 93


La prédiction améliore le délai d'ajustement

	Délai	(s)	Overshoot	%		< ± 0,15% Cible (%)
Action	Prediction	Sans aide	Prediction	Sans aide	Prediction	Sans aide
1% 🗷	99 ± 28*	169 ± 110	9 ± 8	10 ± 16	77 ± 8	82 ± 10
0.5% 7	97 ± 114*	230 ± 183	30 ± 26	17 ± 16	79 ± 9	86 ± 7
0.5% 🗵	64 ± 46*	146 ± 130	25 ± 29	24 ± 22	85 ± 7	90 ± 8
1% 🗵	131 ± 109	200 ± 111	13 ± 14	7 ± 6	81 ± 11	91 ± 6

L'AINOC fait elle faire des économies?

La différence de consommation augmente avec la durée d'administration

Duration	Et Control (Aisy	Et Control (Aisys)		Manual control		
	Mean (95% CI)	n	Mean (95% CI)	n		
Fresh gas fl	ow (litre min ⁻¹)					
< 20	1.4 (1.1-1.7)	41	3.6 (3.3-3.9)	86		
20-40	1.2 (1.1-1.4)	76	3.1 (2.7-3.5)	42		
40-60	0.9 (0.8-1)	87	1.9 (1.7-2.1)	20		
>60	0.7 (0.7-0.8)	117	1.5 (1.3 - 1.7)	20		
Liquid sevo	flurane usage (ml h	1)				
< 20	15 (12-17)	31	33 (30-37)	79		
20-40	14 (13-16)	55	30 (26-35)	34		
40-60	11 (10-12)	52	20 (14-27)	14		
>60	9 (8-9)	43	14 (12-17)	16		
Liquid desfl	urane usage (ml h	1)				
< 20	32 (25-39)	10	75 (50-100)	7		
20-40	27 (21-33)	21	45 (29-62)	8		
40-60	19 (17-20)	35	33 (30-35)	6		
>60	17 (15-18)	74	33 (23-43)	4		

L'AINOC fait-elle faire des économies?

Northern Univ Hospital Melbourne AG programmée ou urgence Avec halogéné

> Phase 1 (12 semaines) Contrôle manuel, n = 1865

Phase de formation à l'AINOC (Aisys)

Phase 2 : AINOC, n = 1810

	Manuel	AINOC
Nb heures/ sem	178 ± 24	160 ± 11
Nb bouteilles		
Sevoflurane (250 ml = 147 \$)	200 (82%)	148 (88%)
Desflurane (240 ml = 235\$)	43 (18 %)	20 (12%)
Coût total \$	39 585	26 536*
/ h (\$)	18.9 ± 6.1	13.8 ± 3.3*
Gaz à effets de serre (kg/h)	23.2 ± 10.8	13 ± 6.2*
Chaux (kg)	156	144

AINOC: performances cliniques

Chirurgie abdominale n = 40*2	AINOC	Manuel
(Lortat-Jacob Anaesthesia 2009)	Zeus TM	DGF _{min} 1L/min.
Durée médiane (%) avec		
90 mmHg < PAS < Ref.+ 15 mmHg	89%	91%
40 < BIS < 60	82%	79%
Nb ajustements / h	6.7 ± 2.5	15.2 ± 11.6***

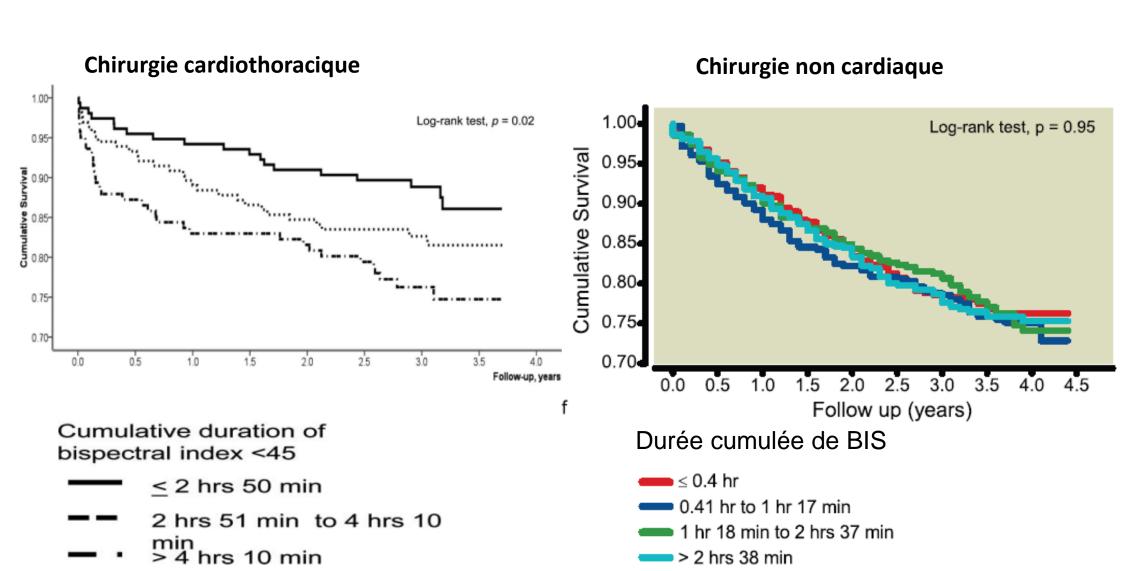
Chirurgie abdominale n = 40*2 (Lucangelo J Clin Monit Comput 2014)	Et Control (Aisys TM)	Manuel (1 L/min FGF)
Sevoflurane délivré (ml/min)	0.11	0.12
Délai (sec) → EtSevo =1%	145	71***
Délai (sec) → Etsevo stable à 1%	145	360***
Nb ajustements halogéné	0	137
Nb ajustements O2	0	107

Quelles conséquences du contrôle de F_{ET}/Ce?

- Ce trop basse : mémorisation
 - Evaporateur vide : → alarme
 - Circuit fermé (♠ à l'induction)
 - Prévenu en partie par 1 montoring EEG (BIS)
- Ce trop haute : quelles conséquences ?
 - Délais de réveil?
 - Dysfonctions cognitives?
 - Mortalité?
 - Coût

Delirium après chirurgie cardiaque/thoracique :

BAG-RECALL trial: 6100 patients à haut risque de mémorisation

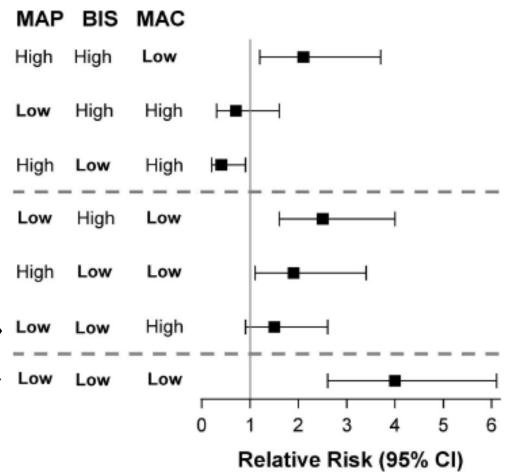

Randomisés : BIS (40-60) vs. ETAC (0,7-1,3 MAC).

Sous groupe (n = 310) \rightarrow USI cardiothoracique. Recherche delirium x2/j \rightarrow J₁₀

Groupe BIS: 18%, ETAC 28%.

	O.R.	95% C.I.	Р
BIS group	0.62	0.34 - 1.15	0.127
Average maintenance ETAC	0.7 (per 0.1 MAC incr.)	0.53 – 0.92	0.01
Unit pRBC	1.26 (per 1 unit)	1.10 – 1.43	0.001
ASA status IV	2.88	1.18 – 6.94	0.02
Euro SCORE	1.20 (per 1 point incr.)	1.07 – 1.36	0.002

Lees valeurs de BIS influencent-elles la survie?



> 2 hrs 38 min

Kertai 2010 & 2011

Le risque relatif de mortalité à 30 jours augmente en situation de triple low

- Cleveland clinic data base
- 24 120 patients > 16 ans
- Avec halogéné (27% iso, 45% sevo, 28% des) et BIS
- Extraction de BIS, PAM et MAC
 → valeur moyenne / patient.
- Valeur< Moy pop 1DS = « Low » Low
- Valeur> Moy pop + 1 DS = «High» Low

Conclusion

- Les « nouveaux » halogénés ont + de 20 ans
 - − Le progrès ← optimisation des modalités d'administration
- Contrôler la Fet ?
 - AINOC, Vapor View, Gasman
- Comment choisir la Fet (et la Cet de morphinique) ?
 - Smart Pilot View
- Influence sur le devenir
 - Sous-dosage et mémorisation : parfois
 - Surdosage :
 - Peu de données convaincantes
 - Attention aux triple low