

tarek.sharshar@rpc.aphp.fr

University of Versailles Raymond Poincaré Teaching Hospital Garches - France

DELIRIUM

DSM IV

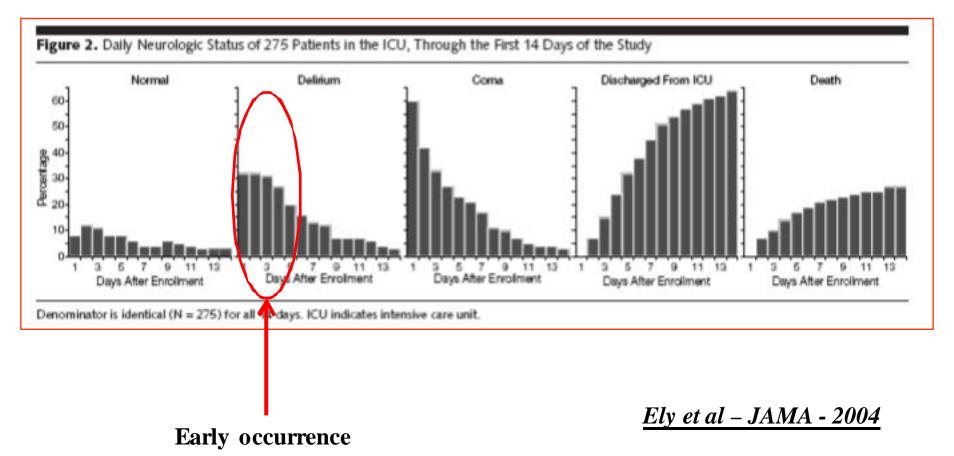
A. <u>Alteration of consciousness</u>: decreased interaction with the environment, attention and concentration difficulties

B. Impairment of one or more <u>cognitive functions</u>:

- Speech
- Memory
- Disorientation in space and time
- Thinking/judgement

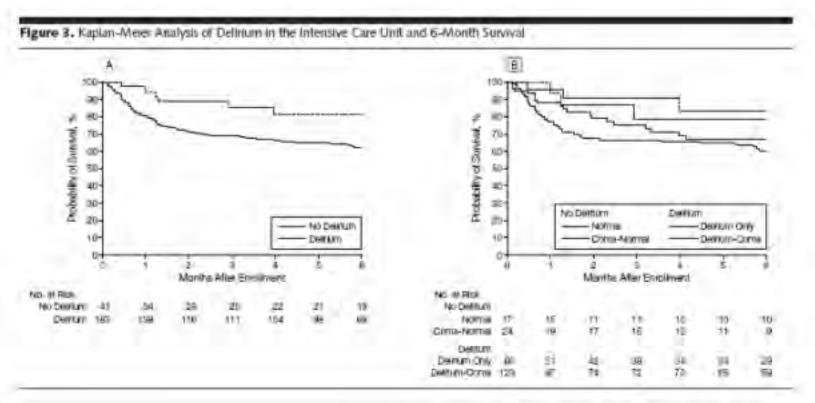
C. Onset sudden or rapidly progressive, fluctuating symptoms

D. Secondary to:


- Medical illness
- Drugs toxicity
- Withdrawal

INCIDENCE

Auteur, année	Population Réa, n	Critère (échelle)	Fréq.
Dubois, ICM 2001	Med-chir, n=216	Delirium (ICDSC)	19%
Ely, CCM 2001	Med, n=48	Delirium (CAM- ICU)	60%
Ely, Crit care 2003	Med non ventilés, n=261	Delirium (CAM- ICU)	48%
Woods, ICM 2004	Med, n=143	Agitation (MAAS)	16%
Ely, JAMA 2004	Med et USIC, n=224	Delirium (CAM- ICU)	82%
Jaber, Chest 2005	Med-chir, n=211	Agitation (Ramsay)	52%
Ely, ICM 2007	Chir-Trauma, n=100	Delirium (CAM- ICU)	70%
Ely, JAMA 2007	Med-chir, n=106	Delirium (CAM- ICU)	80%
Ouimet, ICM 2007	Med-chir, n=820	Delirium (ICDSC)	32%


DISTRIBUTION

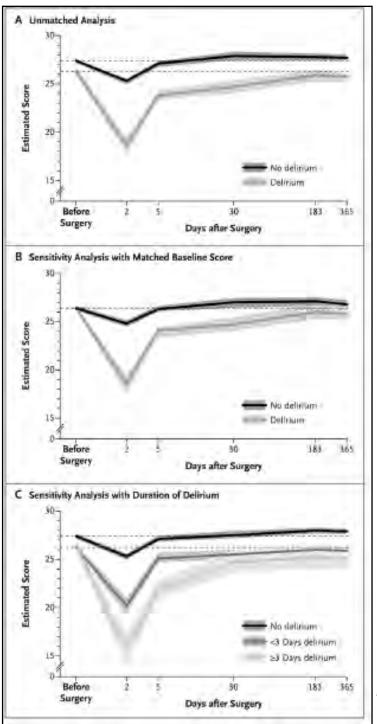
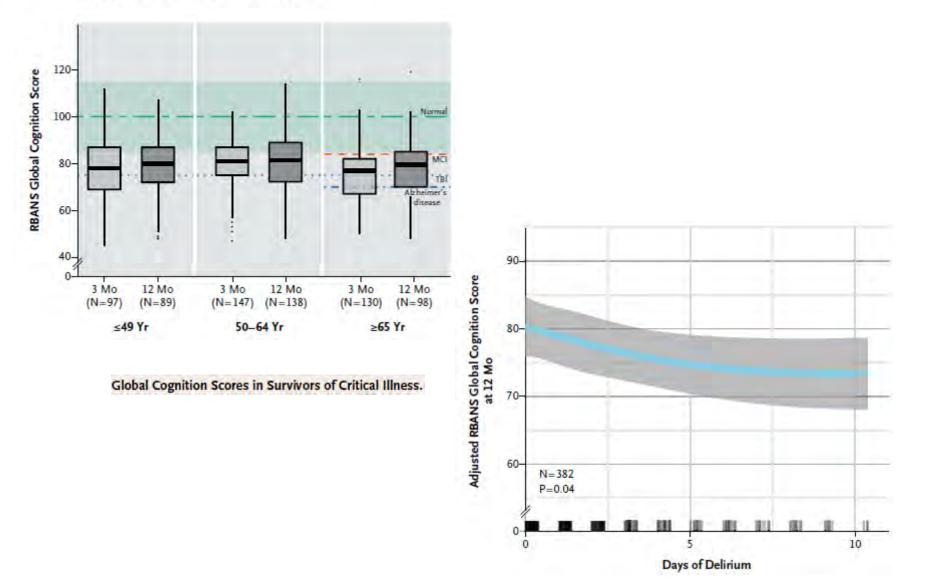

MORTALITY

Table 3. Delinum Status a Stay	and content sourcements	including or manuf me	contry and congresse
	No Delinium	Delinian	Adjusted P Value
	5-Month M	lortality	
No	41	183	
Rate, No. (%)	5(15)	63 (34)	
Adjusted HFI (953) (0)*	Reference	3.2 (1.4-7.7)	.008

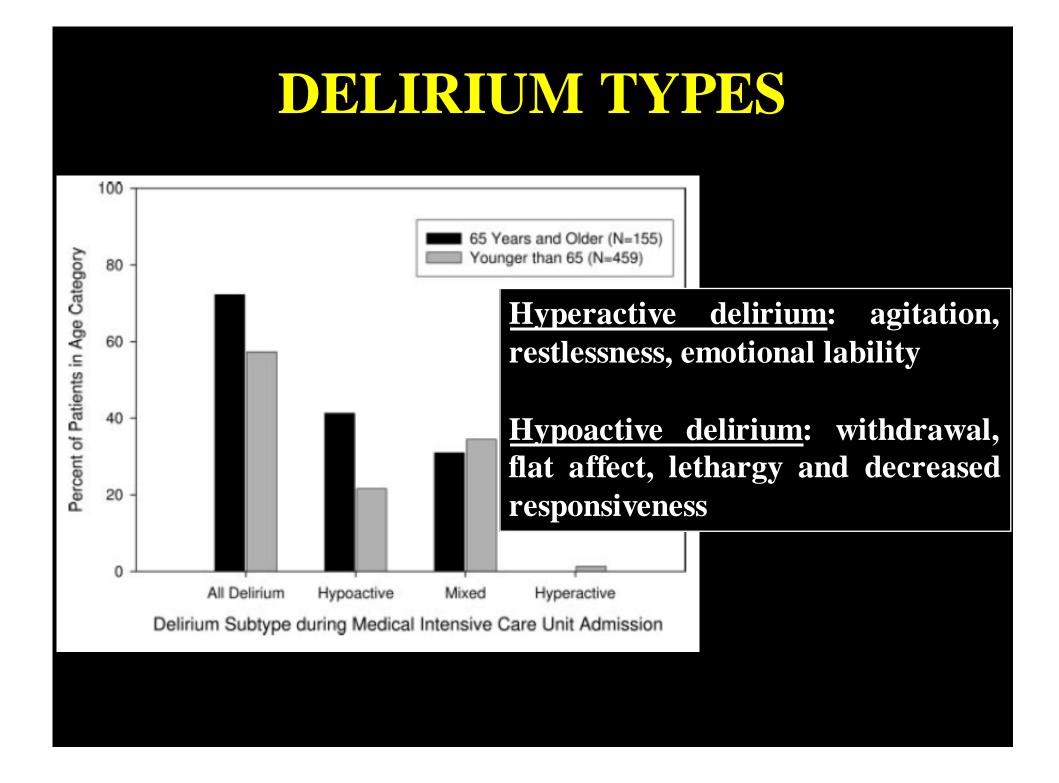
<u>Ely et al – JAMA - 2004</u>

225 Post-operative patients

Saczynski et al – NEMJ - 2012


Cognitive outcomes during follow-up

	Follow-up Assessment		
Outcome, % (n/total)	3 months (n=76)	12 months (n=52)	
No impairment	21% (16/76)	29% (15/52)	
Mild/moderate impairment	17% (13/76)	35% (18/52)	
Severe impairment	62% (47/76)	36% (19/52)	


77 Medical ICU patients

Girard et al – Crit Care Med - 2010

Long-Term Cognitive Impairment after Critical Illness

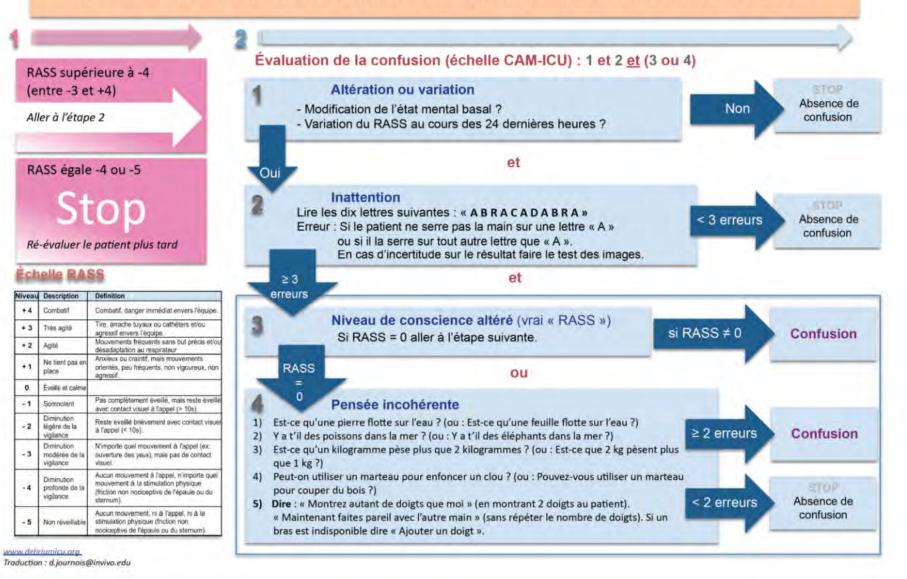
Pandharipande et al – NEJM - 2013

All agitated patients are not confused Most confused patients are not agitated

However, there are some common causes and risk factors between agitation and delirium

DELIRIUM SCALES

Sedation/Agitation :


- RAMSAY
- Richmond Agitation Sedation Scale (RASS)
- Adaptation to the Intensive Care Unit Environment (ATICE)

Delirium :

- Confusion Assessment Method for the ICU (CAM-ICU)
- Intensive Care Delirium Screening Check-list (ICDSC)

MUST BE COMPLETD BY 1. A FULL NEUROLOGICAL EXAMINATION (focal sign, neck stiffness...) 2. EEG

CAM-ICU : Échelle d'évaluation des états confusionnels en réanimation

ICU Delirium Screening Checklist

Items

- Altered level of consciousness (if A or B, do not complete patient evaluation for the period)
 - A: No response, score: none
 - **B:** Response to intense and repeated stimulation (loud voice and pain), score: none
 - D: Normal wakefulness, score: 0
 - E: Exaggerated response to normal stimulation, score: 1
- **Inattention (score: 0 to 1)**
- **Disorientation (score: 0 to 1)**
- Hallucination-delusion-psychosis (score: 0 to 1)
- **Psychomotor agitation or retardation (score: 0 to 1)**
- **Inappropriate speech or mood (score: 0 to 1)**
- Sleep/wake cycle disturbance (score: 0 to 1)
- Symptom fluctuation (score: 0 to 1)

Total (score: 0 to 8)

DIFFERENTIAL DIAGNOSES

Table 1 | Differentiating features of conditions that mimic delirium

Feature	Condition				
	Delirium	Alzheimer disease	Psychotic disorders	Depression	
Descriptive features	Confusion and inattention	Memory loss	Loss of contact with reality	Sadness, anhedonia	
Onset	Acute	Insidious	Acute or slow	Slow	
Course	Fluctuating, often worse at night	Chronic, progressive (but stable over the course of a day)	Chronic, with exacerbations.	Single or recurrent episodes; can be chronic	
Duration	Hours to months	Months to years	Months to years	Weeks to months	
Consciousness	Altered	Normal	Normal	Normal	
Attention	Impaired	Normal, except in late stages	May be impaired	May be impaired	
Orientation	Fluctuates	Poor	Normal	Normal	
Speech	Incoherent	Mild errors	Normal or pressured	Normal or slow	
Thought	Disorganized	Impoverished	Disorganized	Normal	
Illusions and hallucinations	Common (often visual)	Rare, except in late stages	Common	Not usually	
Perceptions	Altered	Altered or normal	Altered	Normal	
Psychomotor changes	Yes	No	Yes	Yes	
Reversibility	Usually	Rarely	Rarely	Possibly	
EEG reading	Moderate to severe background slowing	Normal or mild diffuse slowing	Normal	Normal	

DELIRIUM: IMPAIRED NEUROTRANSMITERS BALANCE Medications Medications Medical illness Alcohol withdrawal Medications Surgical Illness Stroke Benzodiazepine and Alcohol Withdrawal Cholinergic Cholinergic Activation Inhibition Reduced Dopamine Activation GABA Activity Cytokine GABA Benzodiazepines Excess Hepatic Failure Activation Serotonin Delinani Activation Glutamate Activation Serotonin Cortisol Deficiency Excess Medications Substance withdrawal Hepatic failure Tryptophan depletion Alcohol withdrawal Phenyalanine elevation Glucocorticoids Cushings Syndrome Surgical Illness Surgery Medical Illness Stroke

BRAIN STRUCTURES

Hippocampus and frontal cortex

- Acute brain dysfunction
- Long-term cognitive dysfunction
- But not mortality
- Concept of Brainstem Dysfunction
 - Mortality
 - Impaired arousal

RISK FACTORS

HOST FACTORS Age (older) Alcoholism APOE4 (Pre) Dementia

Depression

Hypertension

Smoking

Vision/hearing impairment FACTORS OF CRITICAL ILLNESS Acidosis

> Anemia Fever/infection/sepsis

> > Hypotension

Metabolic disturbances (for example, sodium, calcium, BUN, bilirubin)

Withdrawal syndrome

Respiratory disease/ congestive heart failure

High severity of illness

IATROGENIC FACTORS Immobilization Medications (opioids, bzd) Antibiotic

Steroids

Sleep disturbances

Dehydration, dyspnea

PREDELERIC SCORE

Formula for PRE-DELIRIC model

- Risk of delirium = 1/(1+exp-(-6.31
- + 0.04 × age
- + 0.06 × APACHE-II score
- + 0 for non-coma or 0.55 for drug induced coma or 2.70 for miscellaneous coma or 2.84 for combination coma
- + 0 for surgical patients or 0.31 for medical patients or 1.13 for trauma patients or 1.38 for neurology/neurosurgical patients
- + 1.05 for infection
- + 0.29 for metabolic acidosis
- + 0 for no morphine use or 0.41 for 0.01-7.1 mg/24 h morphine use or 0.13 for 7.2-18.6 mg/24 h morphine use or 0.51 for >18.6 mg/24 h morphine use
- + 1.39 for use of sedatives
- + 0.03 * urea concentration (mmol/L)
- + 0.40 for urgent admission))

The scoring system's intercept is expressed as -6.31; the other numbers represent the shrunken regression coefficients (weight) of each risk factor.

Van den Bogaard et al – BMJ - 2012

The association of intraoperative factors with the development of postoperative delirium.

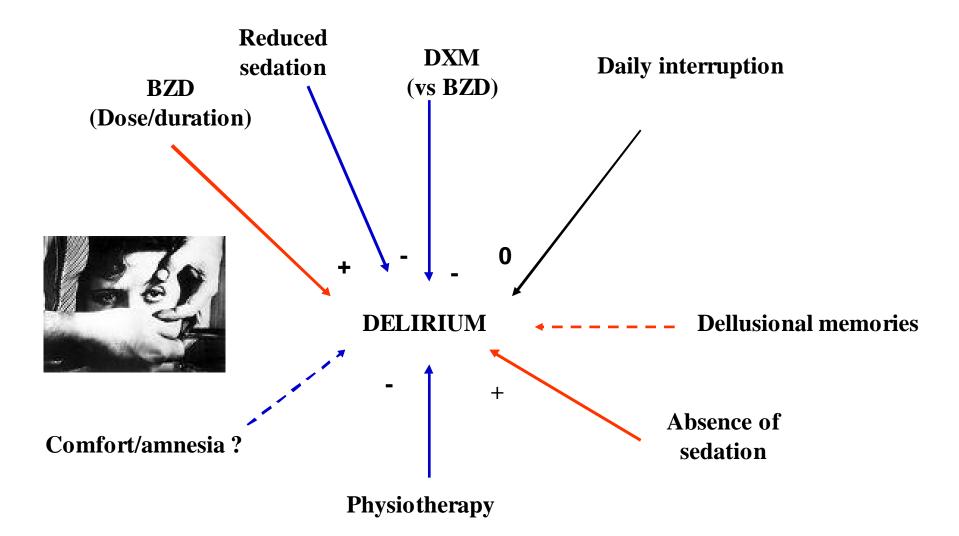
Marcantonio ER, Goldman L, Orav EJ, Cook EF, Lee TH.

PATIENTS AND METHODS:

We studied 1,341 patients > 50 years admitted for major elective noncardiac surgery.

RESULTS:

- Postoperative delirium: 117 (9%) patients.
- Route of anesthesia and intraoperative hemodynamic complications were not associated with delirium.
- Delirium was associated with greater intraoperative blood loss, more postoperative blood transfusions, and postoperative hematocrit <30%.
- After adjusting for preoperative risk factors, postoperative hematocrit <30% was associated with an increased risk of delirium (odds ratio = 1.7, 95% confidence interval 1.1-2.7).


	No Delirium	DELI	RIUM	
		Hypoactive	Mixed	
	n=98	n=50	n=23	p value
PRE-OPERATIVE VARIABLES		1	8.8 1	
Clinical	•		- T	_
Age (years)	61±6	71±9	65±9	p=0.002
Co-Morbidities(Charlson Index ³)	1.9±1.5	4.2±2.3	5.0±2.1	p=0.146
Cognitive Function (Mini-Cog ^b)	4.6±0.7	2.7±1.6	2.7±1.5	p=0.971
Functional Status (Barthel Index ^e)	99±3	90±11	93±11	p=0.173
Laboratory				
Albumin (g/dL)	3.9±0.5	3.3±0.7	3.4±0.7	p=0.753
Hematocrit (%)	44±4	36±8	41±6	p=0.002
Sodium (mEq/L)	139±3	137±3	139±3	p=0.422
Potassium (mEq/L)	4.3±0.5	4.1±0.5	4.2±0.5	p=0.580
Creatinine (mg/dL)	1.1±0.5	1.2±0.7	1.2±0.7	p=1.000
Glucose (mg/dL)	115±41	119±44	112±34	p=0.756
OPERATIONS				
Abdominal	38% (37/98)	58% (29/50)	48% (11/23)	p=0.457
Cardiac	46% (45/98)	26% (13/50)	26% (6/23)	p=1.000
Non-Cardiac Thoracic	8% (8/98)	10% (5/50)	13% (3/23)	p=0.701
Vascular	8% (8/98)	6% (3/50)	13% (3/23)	p=0.372
OUTCOME MEASURES				
ICU Stay (days)	4.6±2.6	8.8±8.7	9.2±5.5	p=0.970
Hospital Stay (days)	8.0±4.6	14.4±11.2	14.5±9.6	p=0.998
Institutionalization	3% (3/98)	42% (21/48) ^e	26% (6/22) ^e	p=0.296
30-Day Mortality	1% (1/98)	14% (7/50)	4% (1/23)	p=0.421
6-Month Mortality	2% (2/96)d	32% (16/50)	9% (2/23)	p=0.041

POST-OPERATIVE DELIRIUM

Robinson et al – Arch Surg - 2011

IMPLICATION OF SEDATION, SLEEP and SEPSIS IN ICU DELIRIUM

SEDATION (very confusing!)

SEDATIVES ET ANALGESICS

Table 2. Daily and Cumulative Doses of Sedative and Analgesic Medications

	Daily I	Daily ICU Dose, Mean (SD), mg			ve ICU Dose, Mean (SD),	mg*
Drug	No Delirium (n = 41)	Delirium (n = 183)	P Value†	No Delirium (n = 41)	Delirium (n = 183)	P Value†
Lorazepam	1.12 (2.2)	4.8 (12.8)	.01	9.0 (20.0)	49.2 (131.3)	.001
Propofol	36.6 (258.6)	48.4 (172.9)	.19	362.1 (1265.4)	591.2 (3942.2)	.20
Morphine	5.8 (17.0)	17.3 (163.8)	.79	48.0 (147.0)	168.1 (1321.9)	.66
Fentanyl	0.53 (1.7)	0.78 (1.7)	.22	3.1 (10.3)‡	8.7 (22.9)‡	.12

Abbreviation: ICU, intensive care unit.

In the persistently comatose patients, the mean (SD) cumulative doses of these medications were: lorazepam, 15 (27) mg; propolol, 318 (1434) mg; morphine, 107 (345) mg; and fentanyl, 3 (12) mg.

By Wilcoxon rank sum test for no delirium vs delirium.

‡Fentanyl is commonly reported to be 100 times more potent than morphine.⁵⁴ Therefore, using a dose conversion factor of 0.01, the median cumulative "morphine equivalent" dose of fentanyl given to patients in the no delirium and delirium groups would equate to 310 mg and 870 mg, respectively. While this mathematical conversion may be flawed or confounded in vivo, such large values are plausible considering fentanyl's initially short duration of action,¹⁸ the potential for rapid tolerance to fentanyl,¹²⁻⁶⁴ and the administration of fentanyl as a continuous infusion rather than an intermittent bolus.

Ely et al – JAMA - 2004

Richard R. Riker, MD
Yahya Shehabi, MD
Paula M. Bokesch, MD
Daniel Ceraso, MD
Wayne Wisemandle, MA
Firas Koura, MD
Patrick Whitten, MD
Benjamin D. Margolis, MD
Daniel W. Byrne, MS
E. Wesley Ely, MD, MPH
Marcelo G. Rocha, MD
for the SEDCOM (Safety and Efficacy
of Dexmedetomidine Compared With
Midazolam) Study Group

Dexmedetomidine vs Midazolam for Sedation of Critically Ill Patients A Randomized Trial

JAMA. 2009;301(5):489-499

	No. (
Outcome	Dexmedetomidine (n = 244)	Midazolam (n = 122)	<i>P</i> Value
Time in target sedation range (RASS score –2 to +1), mean, % ^a	77.3	75.1	.18
Patients completing all daily arousal assessments	225 (92)	103 (84.3)	.09
Patients requiring study drug interruption to maintain RASS score -2 to +1	222 (91)	112 (91.8)	.85
Duration of study drug treatment, median (IQR), d	3.5 (2.0-5.2)	4.1 (2.8-6.1)	.01
Time to extubation, median (95% Cl), d ^b	3.7 (3.1-4.0)	5.6 (4.6-5.9)	.01
ICU length of stay, median (95% Cl), d ^b	5.9 (5.7-7.0)	7.6 (6.7-8.6)	.24
Delirium Prevalence	132 (54)	93 (76.6)	<.001
Mean delirium-free days ^c	2.5	1.7	.002
Open-label midazolam use No. treated	153 (63)	60 (49)	.02
Dose, median (IQR), mg/kg ^d	0.09 (0.03-0.23)	0.11 (0.03-0.28)	.65
Fentanyl use No. treated	180 (73.8)	97 (79.5)	.25
Dose, median (IQR), µg/kg ^d	6.4 (1.8-26.3)	9.6 (2.9-28.6)	.27

From: Dexmedetomidine vs Midazolam or Propofol for Sedation During Prolonged Mechanical Ventilation: Two Randomized Controlled Trials

JAMA. 2012;307(11):1151-1160.doi:10.1001/jama.2012.304

Table 3. Patients' Arousability, Ability to Communicate Pain, and Ability to Cooperate With Nursing Care

	Adjusted Mean E	Adjusted Mean Estimate (95% CI)		
	Dexmedetomidine	Preferred Usual Care	P Value ^a	Estimate of Difference (95% CI)
Dexmedetomidine vs midazolam (MIDEX)	(n = 249)	(n = 251)		
Total VAS scoreb	49.7 (45.5 to 53.8)	30.0 (25.9 to 34.1)	<.001	19.7 (15.2 to 24.2)
Can the patient communicate pain?	46.3 (41.7 to 50.9)	24.2 (19.7 to 28.8)	<.001	22.1 (17.1 to 27.1)
How arousable is the patient?	58.2 (53.7 to 62.6)	40.7 (36.3 to 45.1)	<.001	17.5 (12.7 to 22.3)
How cooperative is the patient?	44.8 (40.3 to 49.2)	25.1 (20.8 to 29.5)	<.001	19.7 (14.8 to 24.5)
Dexmedetomidine vs propofol (PRODEX)	(n = 251)	(n = 247)		
Total VAS scoreb	51.3 (46.9 to 55.7)	40.1 (35.7 to 44.6)	<.001	11.2 (6.4 to 15.9)
Can the patient communicate pain?	49.3 (44.5 to 54.2)	35.4 (30.5 to 40.4)	<.001	13.9 (8.7 to 19.1)
How arousable is the patient?	59.1 (54.7 to 63.4)	47.8 (43.4 to 52.3)	<.001	11.2 (6.5 to 16.0)
How cooperative is the patient?	47.2 (42.3 to 52.2)	38.0 (33.0 to 43.0)	<.001	9.2 (3.9 to 14.5)

Abbreviation: VAS, visual analogue scale.

^aAnalysis of covariance with effects for treatment, country, and baseline values.

^bA higher score represents a better outcome.

A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial

Thomas Strøm, Torben Martinussen, Palle Toft

Lancet 2010; 375: 475-80

	No sedation (n=55)	Sedation (n=58)	p value
Days without mechanical ventilation (from intubation to day 28)	13-8 (11-0); 18-0 (0-24-1)	9-6 (10-0); 6-9 (0-20-5)	0.0191*†
Length of stay (days)			
Intensive care unit	13.1 (5.7)‡	22-8 (11 -7)‡	0-0316*5
Hospital	34 (17-65)	58 (33-85)	0-0039*§¶
Mortality			
Intensive care unit	12 (22%)	22 (38%)	0-06
Hospital	20 (36%)	27 (47%)	0.27
Drug doses (mg/kg)			
Propofol (per h of infusion)**	0 (0-0-515)	0.773 (0.154-1.648)	0.0001
Midazolam (per h of infusion)	0 (0-0)	0-0034 (0-0-0240)	<0.0001
Morphine (per h of mechanical ventilation)	0.0048 (0.0014-0.0111)	0-0045 (0-0020-0-0064)	0.39
Haloperidol (per day of mechanical ventilation)	0 (0-0-0145)	0(0-0)	0.0140
Tracheostomy	16 (29%)	17 (29%)	0.98
Ventilator-associated pneumonia	6 (11%)	7 (12%)	0-85

 Delirium (DSM IV)
 20%
 4%
 0.04

Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial.

```
OBJECTIVE:
```

To compare protocolized sedation with protocolized sedation plus daily sedation interruption in critically ill patients.

INTERVENTION:

Continuous opioid and/or benzodiazepine infusions and random allocation to protocolized sedation (n = 209) (control) or to protocolized sedation + daily sedation interruption (n = 214).

RESULTS:

Rates of delirium were not significantly different between groups (53.3% vs 54.1%; relative risk, 0.98; 95% CI, 0.82-1.17; P = .83).

<u>Mehta et al – JAMA - 2012</u>

SEDATIVES METABOLISM

OBJECTIVES:

To compare biological and drug treatment characteristics in patients with coma and/or delirium while in the ICU.

PATIENTS AND MEASUREMENTS:

In 99 patients receiving IV fentanyl, midazolam, or both, we evaluated:

1-drug doses, covariates likely to influence drug effects (age, body mass index, and renal and hepatic dysfunction);

2- delirium risk factors;

3- concomitant administration of CYP3A & P-glycoprotein substrates/inhibitors;

4- ABCB1, ABCG2, and CYP3A5 genetic polymorphisms;

5 - fentanyl and midazolam plasma levels.

CONCLUSIONS:

Coma is associated with fentanyl and midazolam exposure; delirium is unrelated to midazolam and may be linked to inflammatory status.

These data suggest that iatrogenic coma and delirium are not mechanistically linked.

<u>Skrobik et al – Crit Care Med - 2013</u>

EFFECT OF SEDATION ON BRAINSTEM REFLEXES

EFFECTS OF SEDATION

- Severe septic or critically ill patients often require sedation
- Sedation is a risk factor for delirium
- How to detect acute brain dysfunction in sedated critically ill patients?

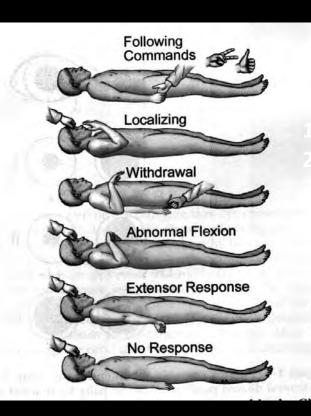
DESIGN

Non brain injured critical ill patients

Reproducibility of neurological examination was satisfactory

<u>Sharshar et al – Crit Care Med – 2011</u>

NEUROLOGICAL ASSESSMENT


GLASGOW COMA SCALE

Eyes response

Motor response

FOCAL SIGNS

Comparison between right and left body 1. Motor responses to orde or painful stimulation 2. Limbs tone 3. Tendon reflexes 4. Plantar reflex

Verbal ry ponse

BRAINSTEM RESPONSES

Eyes spontaneous movement Eyes position Oculocephalogyre response Pupillar size Pupillar light reflex Corneal reflex Grimace Cough reflex

NEUROLOGICAL EXAMINATION

12-24H OF SEDATION	Fitting set	Validation set
Number of patients	72	72
Midazolam (mg/kg)	0.9 (0.6 to 1.8)	1.3 (0.8 to 2.0)
Subfentanyl (µg/kg)	2.0. (0.8 to 4.0)	2.0 (0.7 to 4.6)
sedation to inclusion (hours)	12 (12-24)	12 (12-24)
ATICE (from 0 to 20)	9 (9 to 10)	9 (9 to 10)
RASS	Not tested	-4 (-4 to -2)
Blinking to strong light (%)	31 (43)	28 (39)
Absent eye movement (%)	66 (93)	67 (93)
Myosis (%)	45 (63)	38 (54)
Pupillary light response (%)	51 (71)	58 (82)
Corneal reflex (%)	65 (90)	66 (92)
Oculocephalic response (%)	32 (47)	33 (46)
Cough response (%)	36 (51)	60 (83)
Grimacing (%)	41 (57)	48 (69)

28-DAYS MORTALITY

Multiple logistic model

RESPONSES ASSESSED BETWEEN THE 12Th AND 24th H OF SEDATION

	Fitting set		Validation a	set
	OR (95%CI)	Р	OR (95%CI)	Р
SAPS-II at inclusion	1.06 (1.02 to 1.09)	0.003	1.03 (1.00 to 1.07)	0.051
Absent cough response	7.80 (2.00 to 30.4)	0.003	5.44 (1.35 to 22.0)	0.017
C-index (SE)	0.836 (0.055)		0.743 (0.06	7)

<u>Sharshar et al – Crit Care Med - 2011</u>

ALTERED MENTAL STATUS (after discontinuation of sedation)

Multiple logistic model

RESPONSES ASSESSED BETWEEN THE 12Th AND 24th hours of sedation

	Fitting set		Validation set	
Criteria	Confusion or coma		Delirium or coma	
	OR (95%CI)	Р	OR (95%CI)	P
SAPS-II at inclusion	1.04 (1.00 to 1.07)	0.058	1.03 (0.99 to 1.08)	0.10
Absent oculocephalic response	4.49 (1.34 to 15.1)	0.015	5.64 (1.63 to 19.5)	0.006

Sharshar et al – Crit Care Med - 2011

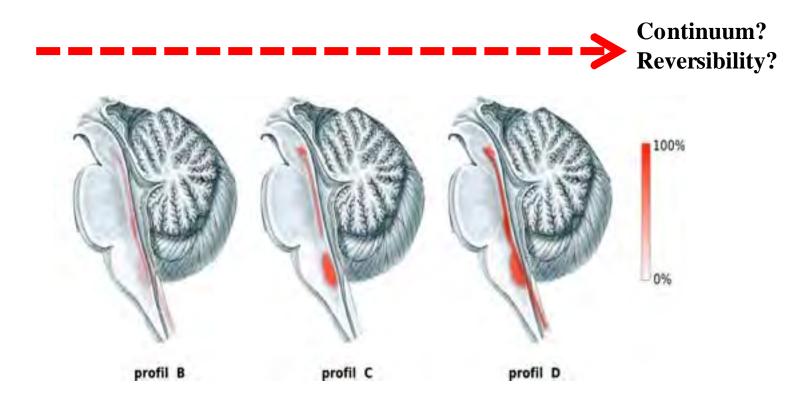
NEUROLOGICAL EXAMINATION

- 1. Feasible, reproducible and interpretable
- 2. Enables to detect focal neurological sign
- **3. Enables to estimate critical illness severity (cough reflex)**
- 4. Enables to identify patient at risk to develop delirium after sedation discontinuation (Oculocephalogyre response) – Titration of sedation?

Sharshar et al – Crit Care Med - 2011

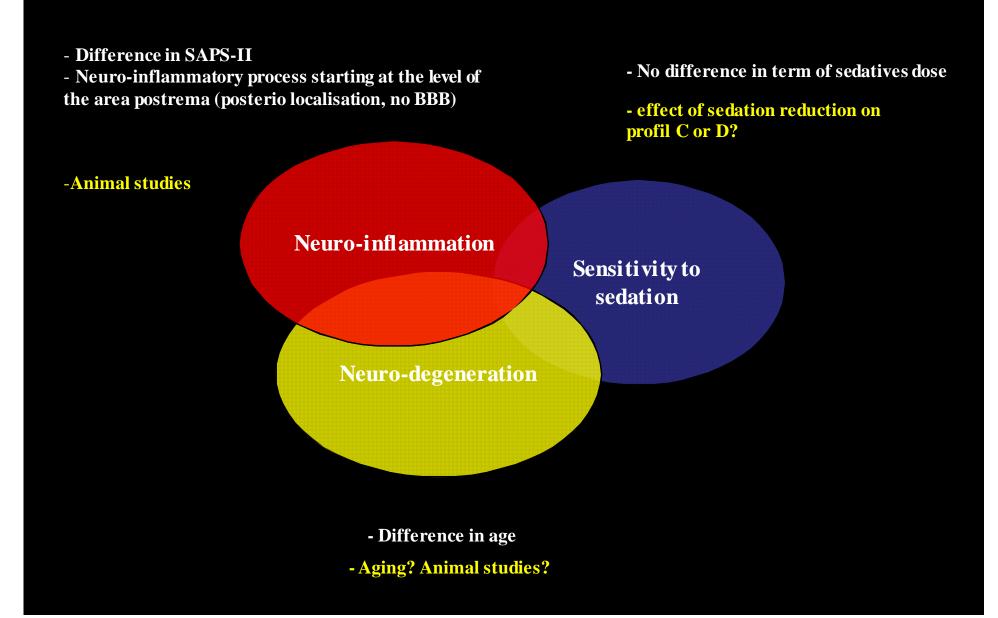
NEUROLOGICAL PROFILES

n (%)	Class1 68 (35%)	Class 2 81(41%)	Class 3 48 (24%)	р
GCS Eyes response	1 (2 to 3)	1 (1 to 1)	1 (1 to 1)	< 0.0001
GCS Motor response	4 (4 to 6)	1 (1 to 1)	1 (1 to 1)	< 0.0001
Myosis	30 (44)	46 (57)	39 (81)	0.026
Pupillar light reflex	64 (94)	70 (86)	28 (58)	< 0.0001
Corneal reflex	68 (100)	77 (95)	31 (65)	< 0.0001
Oculocephalogyre reflex	55 (81)	45 (56)	2 (4)	< 0.0001
Grimace	63 (93)	61 (75)	0 (0)	< 0.0001
Cough reflex	65 (96)	68 (84)	24 (50)	< 0.0001

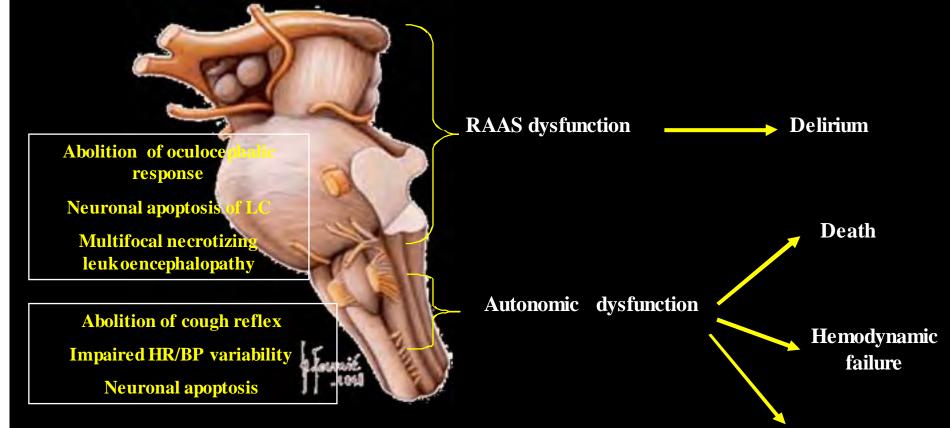


Rohaut et al - Submitted

NEUROLOGICAL PROFILES

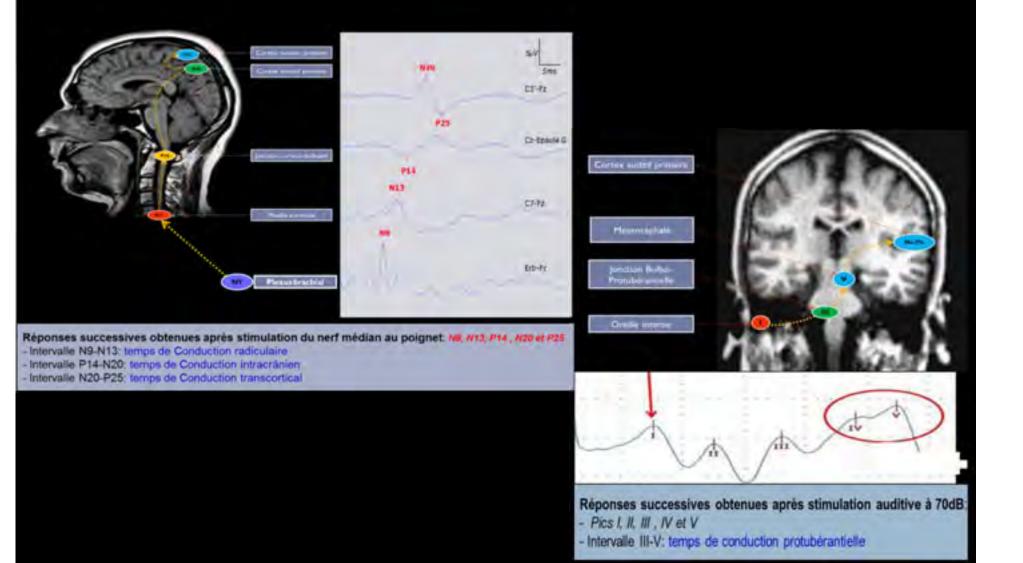

	Class 1	Class 2	Class 3	р
Median (IQR); n (%)	84 (48)	74 (33)	36 (19)	
Midazolam infusion rate	4.9 (3.1)	6.1 (4.0)	6.0 (4.1)	0.17
Midazolam cumulative dose	1.7 (1.6)	1.6 (1.7)	1.5 (1.3)	0.83
Sufentanyl infusion rate	10.1 (7.6)	13.8 (11.0)	13.1 (10.6)	0.073
Sufentanyl cumulative dose	3.6 (3.1)	3.6 (4.3)	3.5 (3.3)	0.71
Age	61 (51 to 78)	68 (55 to 80)	74 (63 to 82)	0.009
Sexe (%)	32 (47)	30 (37)	18 (38)	0.42
SAPS-II	47 (33 to 60)	56 (40 to 75)	58 (47 to 72)	0.006
RASS	-2 (-4 to -2)	-5 (-5 to -4)	-5 (-5 to -5)	< 0.0001
Sepsis (%)	48 (71)	61 (77)	37 (79)	0.54
Coma (%)	7 (11)	13 (19)	11 (28)	0.08
Delirium (%)	25 (41)	35 (51)	19 (51)	0.45
Coma & Delirium (%)	29 (47)	43 (62)	27 (71)	0.041
ICU mortality (%)	15 (22)	23 (30)	30 (62)	< 0.0001

HYPOTHESES



Continuum : process posteriorly spreading from the *area postrema* (deprived from BBB, neuro-inflammatory signaling)

HYPOTHESES

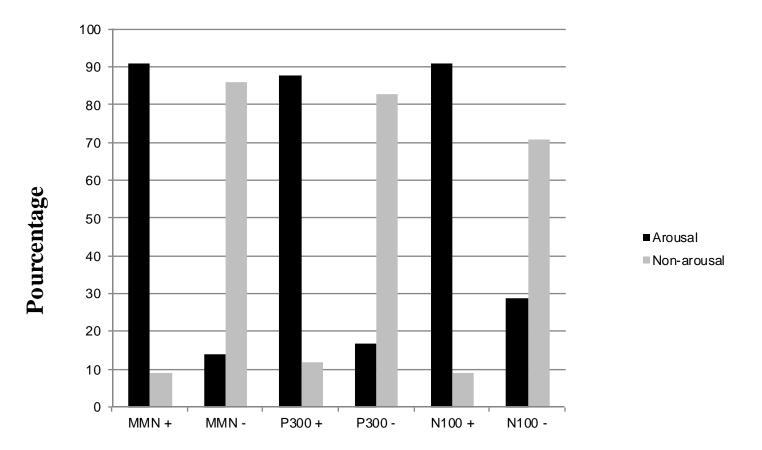


CONCEPT OF BRAINSTEM DYSFUNCTION

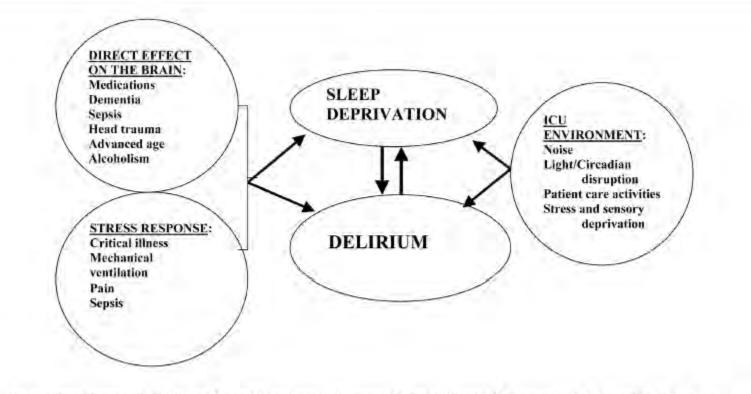
Sharshar et al – CCM – 2002; Sharshar et al – Lancet – 2004; Pandharipande et al – CC -2011; Annane et al – AJRCCM – 1999; Tracey et al – Nature Review Neuroci Maladaptative immune response

EVOKED POTENTIALS

EVOKED POTENTIALS


Increased Latency (%)	All patients N=60	Survivors N= 36 (60)	Dead N=24 (40)	Without Delirium N= 15 (25)	Delirium N= 26 (43)
P14	29 (48)	12 (33)	17 (71)	3 (20)	10 (12)
N20	33 (56)	15 (42)	18 (75)	6 (40)	11 (23)
P14-N20	26 (43)	13 (36)	13 (54)	8 (53)	6 (31)
III	21 (35)	10 (28)	11 (46)	5 (33)	6 (19)
V	26 (43)	13 (36)	13 (54)	5 (33)	12 (19)
III-V	14 (23)	8 (22)	6 (25)	2 (13)	9 (8)
Cough reflex	19 (32)	6 (17)	13 (54)	5 (33)	5 (19)
OCR reflex	31 (52)	15 (42)	16 (67)	6 (40)	13 (23)

Sepsis: 55 (91); Age: 62 ± 15; SAPS-II: 50 ± 18


Azabou et al - Submitted

POTENTIELS EVOQUES COGNITIFS

N=40 critically ill sedated patients

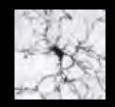
SLEEP

Delirium and some associated risk factors. A possible relationship between delirium and some of its associated risk factors, including sleep deprivation. ICU, intensive care unit.

Weinhouse et al – Crit Care - 2013

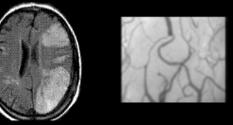
SEPSIS

- Sepsis is an independant risk factors for agitation (*Jaber et al – ICM - 2003*)
- 2. Sepsis is a major cause of delirium (*Ely et al JAMA 2004*) ~ 50%
- **3. Encephalopathy is occuring in 32 to 60% of septic patients** (*Eidelman et al -JAMA -1996*)


PATHOPHYSIOLOGY

Neuroinflammatory process (Delirium => neurodegenerative)

40% mortality


Cytokines NO

(Sharshar 2007, Polito 2011)

Ischemic process

(Delirium/focal => vascular dementia)

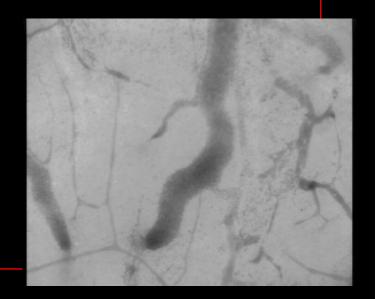
60% mortality

(Polito et al 2013, Sharshar 2007, Sharshar 2004)

Neurotoxic process (Delirium => neurodegenerative)

NEUROINFLAMMATORY PROCESS EXPERIMENTAL OR CLINICAL DEMONSTRATION

- 1. Endothelial activation
- 2. Alteration of blood-brain barrier
 - **1.** Role of $TNF\alpha$
 - 2. Role of complement
- 3. Brain expression of cytokines and iNOS
- 4. Microglial activation
 - 1. Amplification of neuro-inflammatory process
- 5. Brain cells oxidative stress
- 6. Brain cell apoptosis
- 7. Alteration of neurotransmission


MINOCYCLINE

STATINES

ISCHEMIC PROCESS

1. Macrocirculatory dysfunction

- 1. Systemic hypotension or decreased blood flow
- 2. Impaired autoregulation
- 2. Microcirculatory dysfunction
 - 1. Role of TNFa
 - 2. Role of complement
- 3. Clotting disorder

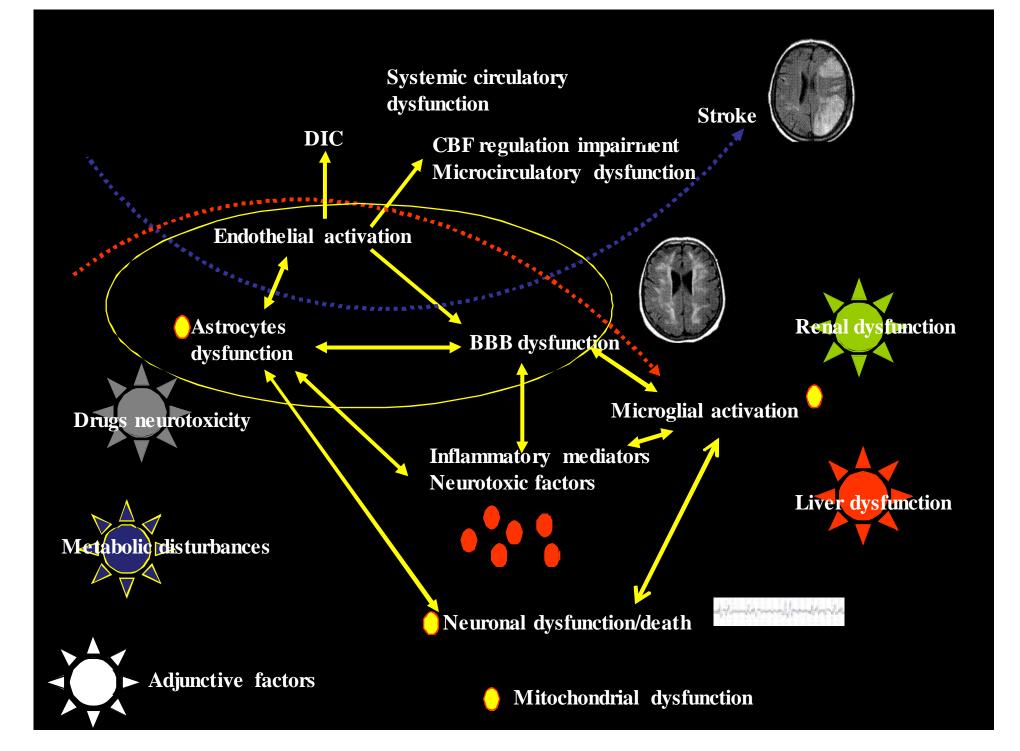
Taccone et al – Crit Care - 2010

CEREBRAL BLOOD FLOW

CONTROVERSIAL

Cerebral blood flow, cerebral vasomotor reactivity, autoregulation and cerebral metabolic rates have been shown to be decreased or preserved in experimental sepsis and in septic patients.

Should we monitor and "optimize" cerebral blood flow in patients with septic shock?


Crit Care - 2010; Siami et al - Crit Care Clin - 2008

NEUROTOXIC PROCESS

- SAE is characterized by EEG abnormalities
- Some EEG patterns are associated with outcome
- SAE results from neurotransmission impairment
- Sepsis impairs long-term potentiation
- Evidence of neuronal apoptosis

ANTI-EPILEPTIC DRUGS? (Levetiracetam)

> <u>Sharshar et al – Lancet – 2004</u> Oddo et al – Crit Care Med - 2009

TREATMENT

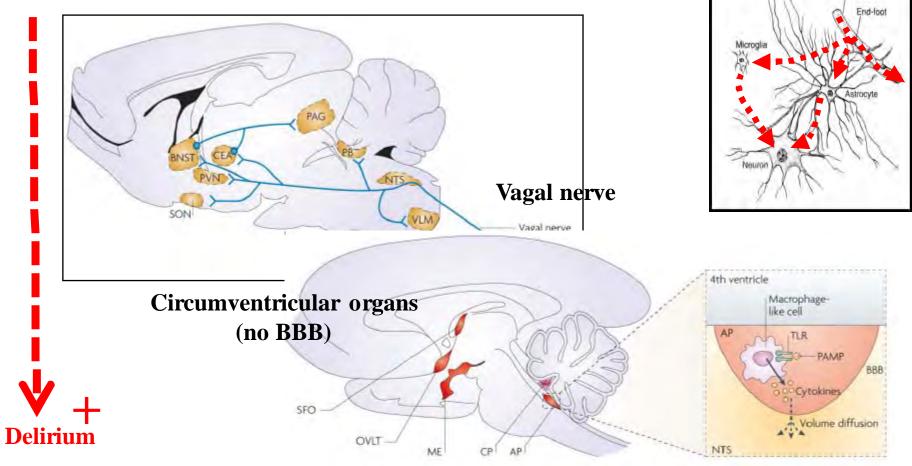
No specific treatment other than control of sepsis

Persistence or reappearance of delirium often indicates that the sepsis is uncontrolled

Cerebral effects of accepted treatments of septic shock

- **1.** Activated protein C ? (Effect on endothelial activation)
- 2. Corticosteroids? (decrease in PTSD, effect on BBB)
- **3.** Insulin? (neuroprotective?)

COMPORTEMENT DE MALADIE REPONSE A L'AGRESSION ENCEPHALOPATHIE

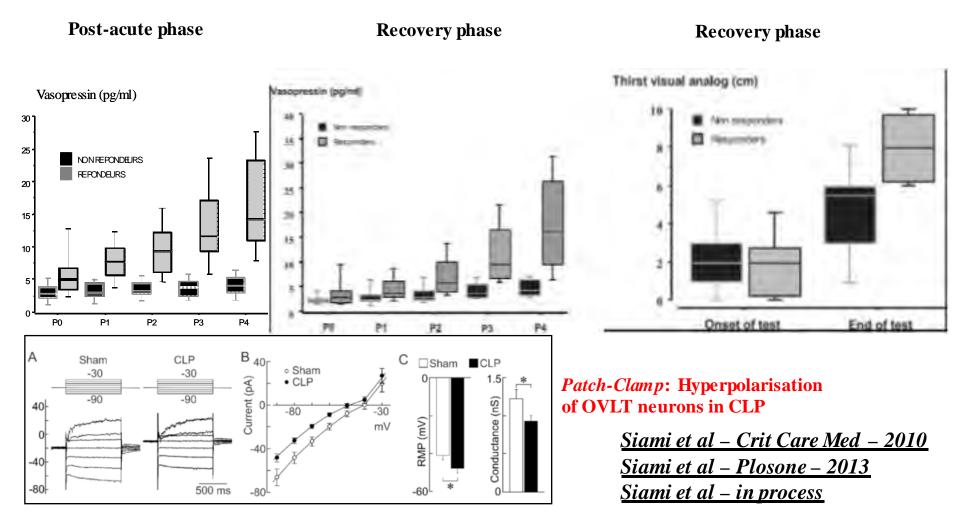

CONCEPT OF SICKNESS BEHAVIOR

- Sickness behavior is a major, highly preserved and adaptive component of response to stress.
- The sickness behavior includes stereotypical changes: anxiety, immobility, somnolence, starving, autonomic and neuroendocrine changes etc...
- It involves the amygdala and hippocampus and is mediating by specific structures: circumventricular organs and vagal nerve .

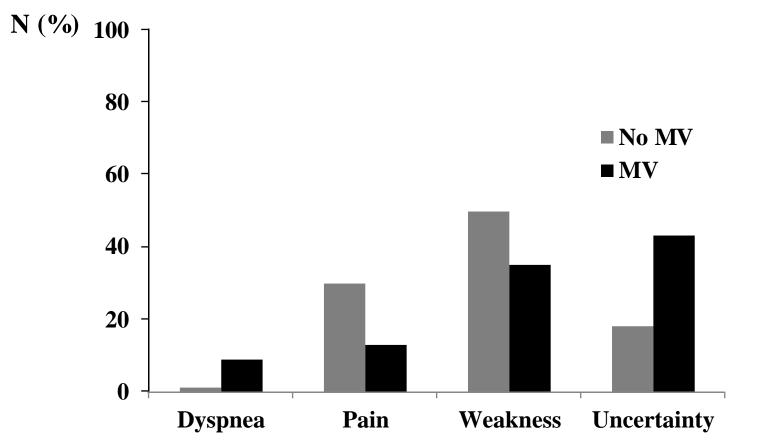
Dantzer et al – Nat Neurosci Rev-2008

PHYSIOLOGICAL BRAIN SIGNALLING

Sickness behavior Adapted autonomic and neuroendocine response

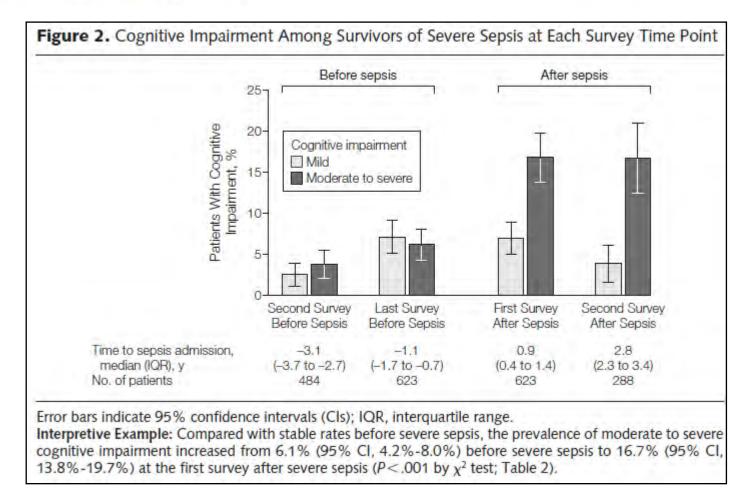


<u>Dantzer et al – Nat Rev Sci - 2008</u>

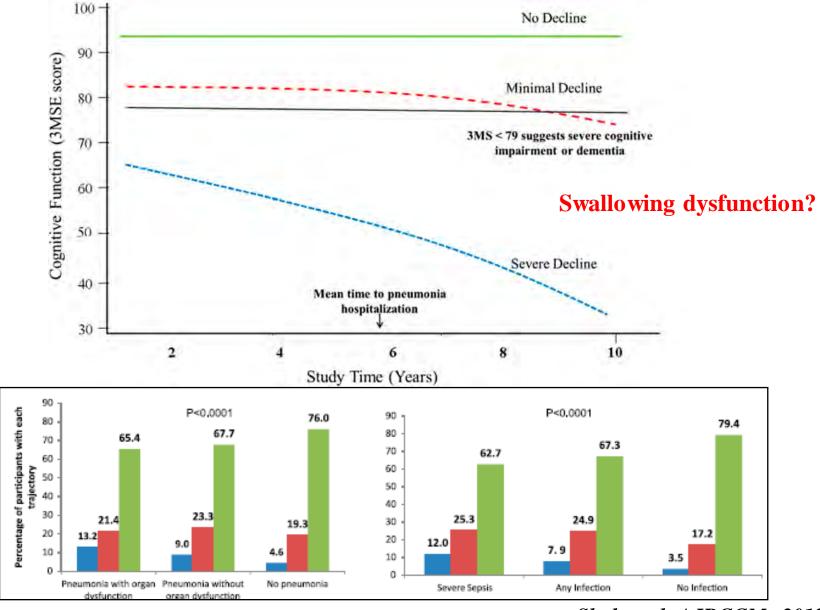

Capillary

OVLT DYSFUNCTION

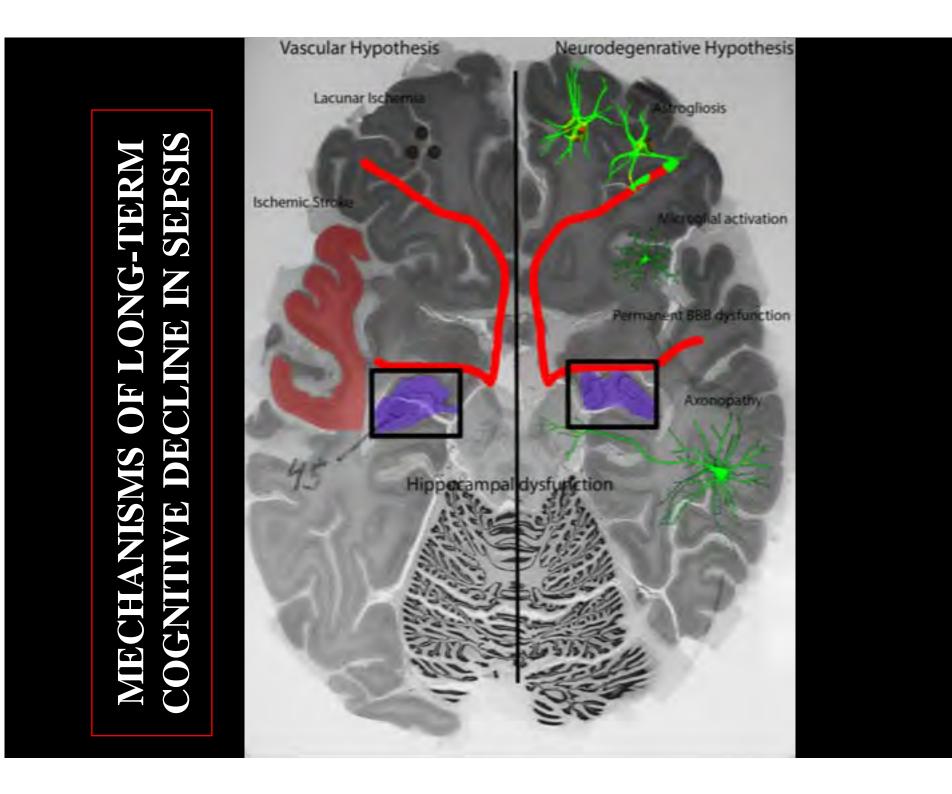
Impaired vasopressin secretion during an osmotic challenge and thirst perception in post-acute and recovery phases of septic shock; related to hyperplarisation of osmoreceptors, located in OVLT


ANXIETY & FEAR (patients with GBS)

<u>Sharshar et al – BMJopen access-2012</u>


PANICU PROJECT: *TO ASSESS THE PROGNOSIS VALUE OF ANXIETY AT ADMISSION IN ICU*

Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis



Iwashyna et at – JAMA - 2010

Bidirectional Relationship between Cognitive Function and Pneumonia

Shah et al-AJRCCM- 2013

Effects of patient-directed music intervention on anxiety and sedative exposure in critically ill patients receiving mechanical ventilatory support: a randomized clinical trial.

OBJECTIVE:

To test whether listening to self-initiated patient-directed music (PDM) can reduce anxiety and sedative exposure during ventilatory support in critically ill patients. DESIGN, SETTING, AND PATIENTS:

Randomized clinical trial that enrolled 373 patients from 12 intensive care units (ICUs).

INTERVENTIONS:

Self-initiated PDM (n = 126) with preferred selections tailored by a music therapist whenever desired while receiving ventilatory support, self-initiated use of noise-canceling headphones (NCH; n = 122), or usual care (n = 125). **RESULTS:**

Patients in the PDM group had an anxiety score that was 19.5 points lower (95% CI, -32.2 to -6.8) than patients in the usual care group (P = .003). PDM significantly reduced both measures of sedative exposure. By the fifth study day, the PDM patients received 2 fewer sedative doses (reduction of 38%) and had a reduction of 36% in sedation intensity.

SLEEP

OBJECTIVES:

To determine if a quality improvement intervention improves sleep and delirium/cognition. **DESIGN:**

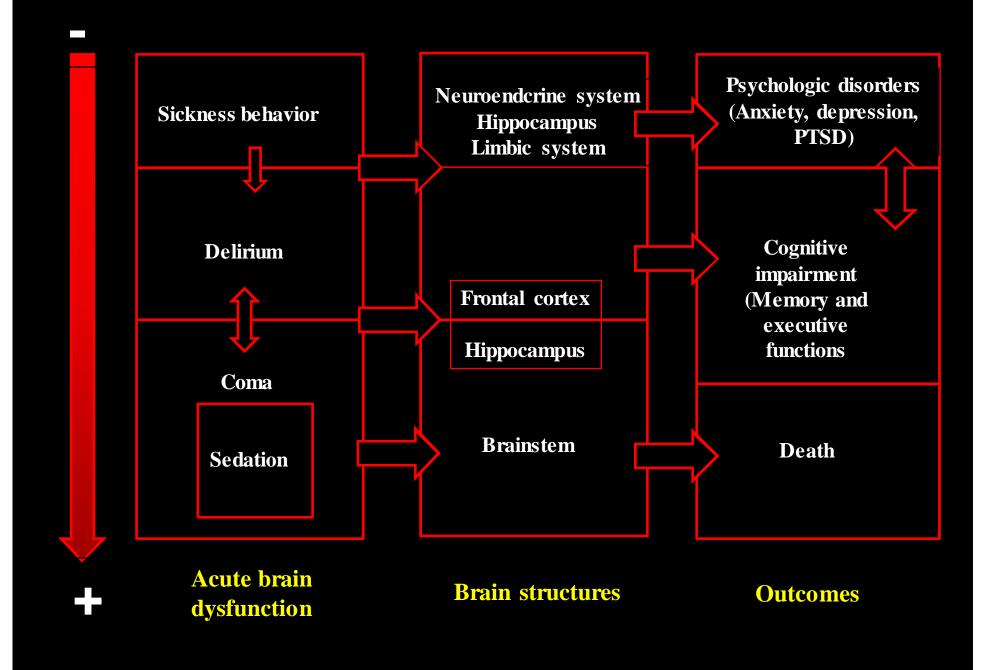
Observational, pre-post design.

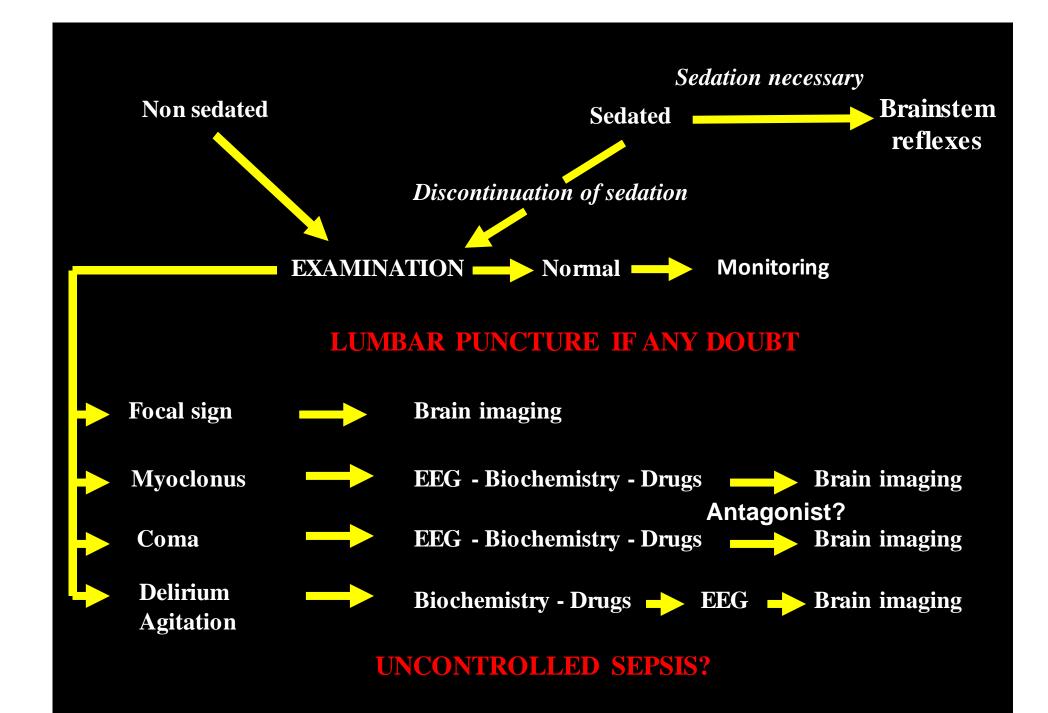
PATIENTS:

300 medical ICU patients.

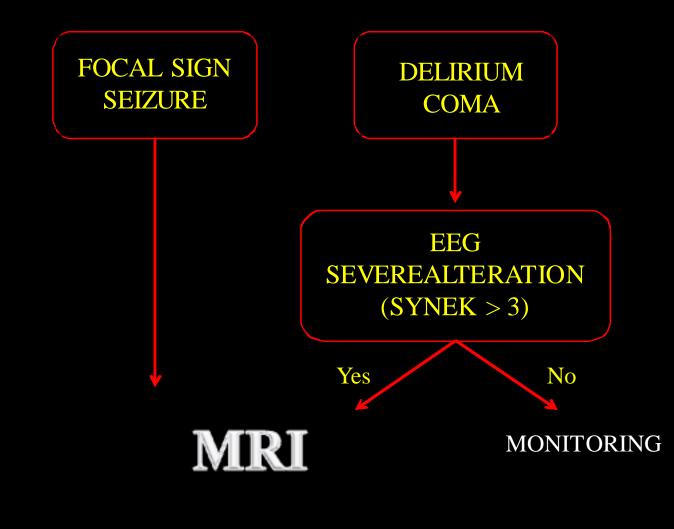
INTERVENTIONS:

This medical ICU-wide project involved a "usual care" baseline stage, followed by a quality improvement stage incorporating multifaceted sleep-promoting interventions implemented with the aid of daily reminder checklists for ICU staff.


MEASUREMENTS AND MAIN RESULTS:


Improvements in overall Richards-Campbell Sleep Questionnaire sleep quality ratings did not reach statistical significance,

but there were significant improvements in daily noise ratings (mean \pm SD: 65.9 \pm 26.6 vs. 60.5 \pm 26.3, p = 0.001), incidence of delirium/coma (odds ratio: 0.46; 95% confidence interval, 0.23-0.89; p = 0.02), and daily delirium/coma-free status (odds ratio: 1.64; 95% confidence interval, 1.04-2.58; p = 0.03).


Kamdar et al – Crit Care Med - 2013

MANAGEMENT

MANAGEMENT

TREATMENT

Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction

Radtke et al – Br JAnaesth - 2013

A total of 1277 patients of a consecutive sample were randomized $(n=638$ open, $n=639$ blinded). In one group, the anaesthesiologists were allowed to use the bispectral index (BIS) data to guide anaesthesia In the other group, BIS monitoring was blinded. Cognitive function was evaluated at baseline, 1 week, and 3 months after	
operation.	Postoperative delirium: 95 patients (16.7%) in the intervention group versus 124 patients (21.4%) in the control group ($P=0.036$). The percentage of episodes of deep anaesthesia (BIS values <20) were independently predictive for postoperative delirium ($P=0.006$; odds ratio 1.027).

Haloperidol prophylaxis in critically ill patients with a high risk for delirium

Control Intervention group Differences (N = 177)(P-value) group (N = 299) 73 ± 22 Predicted delirium chance 75 ± 19 0.50 Observed delirium incidence (n.%) 225 (75%) 115 (65%) 0.01 Non-delirium: 0.38 74 (25%) 62 (35%) Delirium subtype: - Hyperactive 20 (7%) 6 (3%) Hypoactive 81 (27%) 33 (1996) - Mixed 124 (41%) 76 (43%) Number of delirium free days without coma in 28 days 13 (3 to 27) 20 (8 to 27) 0.003 Re-intubation (96) 25 (896) 15 (996) 0.51 Duration mechanical ventilation in hrs. 118 (39 to 250) 90 (36 to 229) 0.24 Unplanned removal tubes/lines (%) 58 (19%) 21 (12%) 0.02 - Tube 8 (3%) 4 (2%) - Gastric tube 26 (9%) 14 (8%) - CVC/arterial line 24 (8%) 1 (<1%) - Other 0 (0%) 2 (196) 55 (18%) Re-admission 20 (11%) 0.03 LOS-ICU 7 (3 to 13) 6 (3 to 12) 0.65 LOS-in hospital 21 (12 to 41) 20 (11 to 31) 0.16 13 (7.3%) 28-day mortality 36 (12%) 0.08*

Table 2 Differences between control group and complete intervention group

Data are presented as median, interguantile range (IQR), unless mentioned otherwise. * Cox proportional hazard regression analysis adjusted for sepsis and cohort (hazard rate 0.80; 95% CI 0.66 to 0.98.

Haloperidol: 1mg/8h

Van den Boogaard et al – Crit Care - 2013

Effect of intravenous haloperidol on the duration of delirium and coma in critically ill patients (Hope-ICU): a randomised, double-blind, placebo-controlled trial

Valerie J Page, E Wesley Ely, Simon Gates, Xiao Bei Zhao, Timothy Alce, Ayumi Shintani, Jim Jackson, Gavin D Perkins, Daniel F McAuley

Methods We did this double-blind, placebo-controlled randomised trial in a general adult intensive care unit (ICU). Critically ill patients (≥18 years) needing mechanical ventilation within 72 h of admission were enrolled. Patients were randomised (by an independent nurse, in 1:1 ratio, with permuted block size of four and six, using a centralised, secure web-based randomisation service) to receive haloperidol 2.5 mg or 0.9% saline placebo intravenously every 8 h, irrespective of coma or delirium status. Study drug was discontinued on ICU discharge, once delirium-free and coma-free for 2 consecutive days, or after a maximum of 14 days of treatment, whichever came first. Delirium was assessed using the confusion assessment method for the ICU (CAM-ICU). The primary outcome was delirium-free and coma-free days, defined as the number of days in the first 14 days after randomisation during which the patient was alive without delirium and not in coma from any cause. Patients who died within the 14 day study period were recorded as having 0 days free of delirium and coma. ICU clinical and research staff and patients were masked to treatment throughout the study. Analyses were by intention to treat. This trial is registered with the International Standard Randomised Controlled Trial Registry, number ISRCTN83567338.

	Haloperidol (n=71)	Placebo (n-70)	Difference (95% CI)* or RR (95% CI)*	p value
Alive, delirium-free, and coma-free days in first 14 days	5 (0-10)	6 (0-11)	-0-48 (-2-08 to 1-21)	0-53
Days in delirium in first 14 days†	5(2-8)	5 (1-8)	0-01 (-1-31 to 1-33)	0.99
Days in coma in first 14 dayst	0 (0-2)	0-5 (0-2)	0-00 (-0-68 to 0-67)	0.99
Alive, delirium-free, and coma-free days in first 28 days	19 (0-24)	19-5 (0-25)	-0-26 (-3-72 to 3-46)	0.57
Days in delirium in first 28 days†	5 (2-10)	5 (1-9)	-0-38 (-2-37 to 1-62)	0.71
Days in coma in first 28 daysf	0 (0-2)	1(0-2)	-0-05 (-0-82 to 0-72)	0.90
Ventilator-free days in first 28 days	21 (0-25)	17 (0-25)	0-25 (-3-26 to 4-16)	0-88
Mortality at 28 days	20 (28-2%)	19 (27-1%)	RR 1-04 (0-61 to 1-77)	- 2
Length of critical care stay (days)‡	9.5 (5-14)	9 (5-18)	-1-45 (-5-42 to 2-52)	0-47
Length of hospital stay (days)§	18-5 (12-31)	26 (15-40)	-5-13(-21-75 to 11-48)	0.54

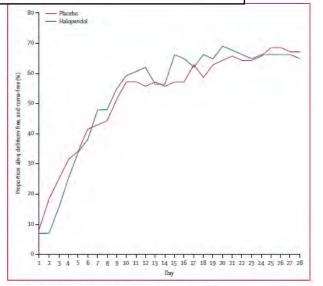


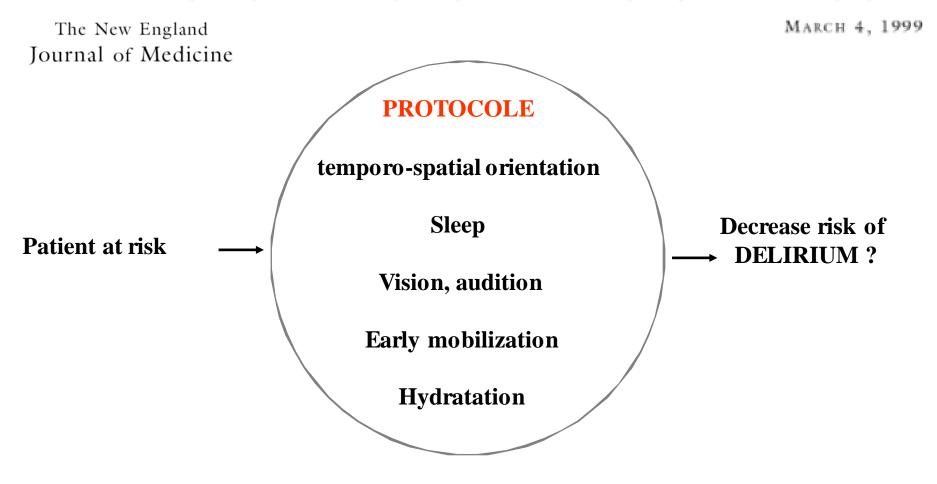
Table 3: Outcomes

Figure 2: Proportion of study patients with resolution of delinium over time

W Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial

William D Schweickert, Mark C Pohlman, Anne S Pohlman, Celerina Nigos, Amy J Pawlik, Cheryl L Esbrook, Linda Spears, Megan Miller, Mietka Franczyk, Deanna Deprizio, Gregory A Schmidt, Amy Bowman, Rhonda Barr, Kathryn E McCallister, Jesse B Hall, John P Kress

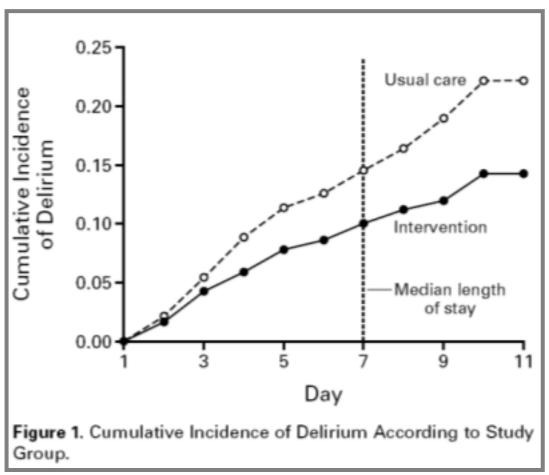
	Intervention (n=49)	Control (n=55)	p value
Return to independent functional status at hospital discharge	29 (59%)	19 (35%)	0.02
ICU delirium (days)	2.0 (0.0-6.0)	4.0 (2.0-7.0)	0-03
Time in ICU with delirium (%)	33% (0-58)	57% (33-69)	0.02
Hospital delirium (days)	2.0 (0.0-6.0)	4.0 (2.0-8.0)	0-02
Hospital days with delirium (%)	28% (26)	41% (27)	0.01
Barthel Index score at hospital discharge	75 (7-5-95)	55 (0-85)	0-05
ICU-acquired paresis at hospital discharge	15(31%)	27 (49%)	0.09
Ventilator-free days*	23.5 (7.4-25.6)	21.1 (0.0-23.8)	0-05
Duration of mechanical ventilation (days)	3-4 (2-3-7-3)	6-1 (4-0-9-6)	0.02
Duration of mechanical ventilation, survivors (days)	3.7 (2.3-7.7)	5.6 (3.4-8.4)	0.19
Duration of mechanical ventilation, non-survivors (days)	2.5 (2.4-5.5)	9·5 (5·9-14·1)	0-04
Length of stay in ICU (days)	5-9 (4-5-13-2)	7.9 (6.1-12.9)	0.08
Length of stay in hospital (days)	13-5 (8-0-23-1)	12.9(8.9-19.8)	0.93
Hospital mortality	9 (18%)	14 (25%)	0.53


Lancet 2009; 373: 1874-82

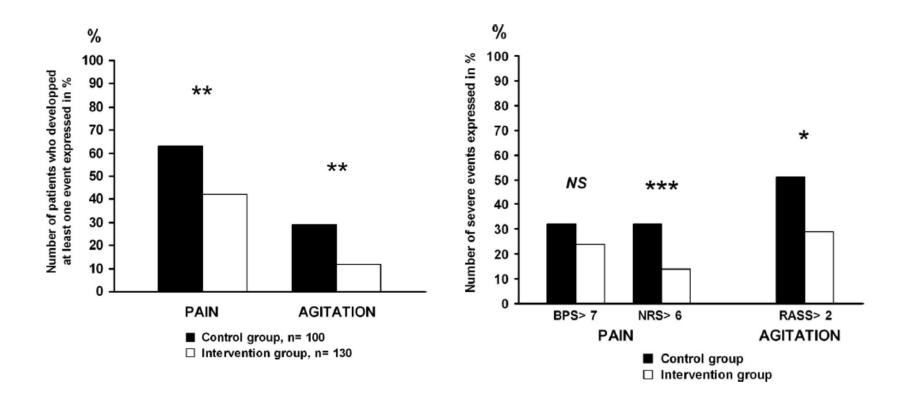
Data are n (%), median (IQR), or mean (SD). ICU-intensive care unit. *Ventilator-free days from study day 1 to day 28. Barthel Index scale 0-100, APA CHE II scale 0-71.

Table 3: Main outcomes according to study group

A MULTICOMPONENT INTERVENTION TO PREVENT DELIRIUM IN HOSPITALIZED OLDER PATIENTS


SHARON K. INOUYE, M.D., M.P.H., SIDNEY T. BOGARDUS, JR., M.D., PETER A. CHARPENTIER, M.P.H., LINDA LEO-SUMMERS, M.P.H., DENISE ACAMPORA, M.P.H., THEODORE R. HOLFORD, PH.D., AND LEO M. COONEY, JR., M.D.

A MULTICOMPONENT INTERVENTION TO PREVENT DELIRIUM IN HOSPITALIZED OLDER PATIENTS


SHARON K. INOUYE, M.D., M.P.H., SIDNEY T. BOGARDUS, JR., M.D., PETER A. CHARPENTIER, M.P.H., LINDA LEO-SUMMERS, M.P.H., DENISE ACAMPORA, M.P.H., THEODORE R. HOLFORD, PH.D., AND LEO M. COONEY, JR., M.D.

The New England Journal of Medicine MARCH 4, 1999

Impact of systematic evaluation of pain and agitation in an intensive care unit*

Gerald Chanques, MD; Samir Jaber, MD, PhD; Eric Barbotte, MD; Sophie Violet, RN; Mustapha Sebbane, MD; Pierre-François Perrigault, MD; Claude Mann, MD, PhD; Jean-Yves Lefrant, MD, PhD; Jean-Jacques Eledjam, MD, PhD

Effects of patient-directed music intervention on anxiety and sedative exposure in critically ill patients receiving mechanical ventilatory support: a randomized clinical trial.

OBJECTIVE:

To test whether listening to self-initiated patient-directed music (PDM) can reduce anxiety and sedative exposure during ventilatory support in critically ill patients. DESIGN, SETTING, AND PATIENTS:

Randomized clinical trial that enrolled 373 patients from 12 intensive care units (ICUs).

INTERVENTIONS:

Self-initiated PDM (n = 126) with preferred selections tailored by a music therapist whenever desired while receiving ventilatory support, self-initiated use of noise-canceling headphones (NCH; n = 122), or usual care (n = 125). **RESULTS:**

Patients in the PDM group had an anxiety score that was 19.5 points lower (95% CI, -32.2 to -6.8) than patients in the usual care group (P = .003). PDM significantly reduced both measures of sedative exposure. By the fifth study day, the PDM patients received 2 fewer sedative doses (reduction of 38%) and had a reduction of 36% in sedation intensity.

SLEEP

OBJECTIVES:

To determine if a quality improvement intervention improves sleep and delirium/cognition. **DESIGN:**

Observational, pre-post design.

PATIENTS:

300 medical ICU patients.

INTERVENTIONS:

This medical ICU-wide project involved a "usual care" baseline stage, followed by a quality improvement stage incorporating multifaceted sleep-promoting interventions implemented with the aid of daily reminder checklists for ICU staff.

MEASUREMENTS AND MAIN RESULTS:

Improvements in overall Richards-Campbell Sleep Questionnaire sleep quality ratings did not reach statistical significance,

but there were significant improvements in daily noise ratings (mean \pm SD: 65.9 \pm 26.6 vs. 60.5 \pm 26.3, p = 0.001), incidence of delirium/coma (odds ratio: 0.46; 95% confidence interval, 0.23-0.89; p = 0.02), and daily delirium/coma-free status (odds ratio: 1.64; 95% confidence interval, 1.04-2.58; p = 0.03).

Kamdar et al – Crit Care Med - 2013

CONCLUSION

- Frequent and severe complication
- Must be daily detected by validating scales
- Patients at risk must be identified
- Preventive strategies must be implemented

Neurosciences in Intensive Care International Symposium (NICIS)

Neuroscience of repair regeneration and recovery from critical illness

June 17-18-19 2015

Institut Pasteur Paris

Scientific Organizers

Pr Fernando Bozza - Oswaldo Cruz Foundation Pr Jan Claassen - Columbia University College of Physicians & Surgeons Pr Jean Mantz - University Paris Diderot Pr Tarek Sharshar - University of Versailles, Institut Pasteur Pr Robert D Stevens - Johns Hopkins University

University of Versailles Raymond Poincaré Service de Réanimation Pr Djillali Annane

Institut Pasteur Fabrice Chrétien Human Histopathology and Animal Models

MERCI

WHAT WAS WRONG?

A 52 years old and alcoholic man was hospitalised in ICU for an hypoxemic community-acquired pneumonia, with blood cultures positive to S. pneumoniae. At admission, neurological examination was normal and there was no neck stiffness.

One day later, he required mechanical ventilation and developed agitation, which was treated with Haloperidol.

Because he became more and more agitated, he was heavily sedated. Agitation was ascribed to alcohol withdrawal.

A week later, while the patient was sedated, bilateral larged fixed pupils were observed.

CT scan showed diffuse brain oedema and lumbar puncture meningitis.

SEVRAGE ETHYLIQUE

- By definition, the patient must have two or more of the following after cessation or reduction of alcohol use that has been heavy or prolonged:
- 1. autonomic hyperactivity (sweating, tachycardia);
- 2. increased hand tremor;
- 3. insomnia;
- 4. nausea or vomiting;
- 5. transient visual, tactile, or auditory hallucinations or illusions;
- 6. psychomotor agitation; anxiety and tonic-clonic seizures.

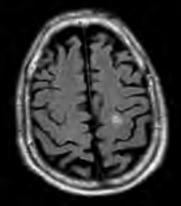
Treatment: BZD

Clinical Institute Withdrawal Assessment Scale for Alcohol,

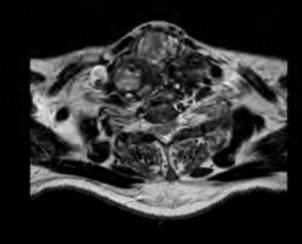
DTS is characterised by a fluctuating disturbance of consciousness and change in cognition occurring over a short period of time. It is accompanied by a further exacerbation of autonomic symptoms (sweating, nausea, palpitations and tremor) and an exacerbation of psychological symptoms including anxiety.

CASE REPORT

• Mme X..., 53 years old, traited with CS et I- for LED, is admitted for ARF related to a thrombotic microangiopathy. Occurrence of a hyperactive delirium: « on me vole mon enfant, les médecins me vole mon enfant... »


MULTIFACTORIAL

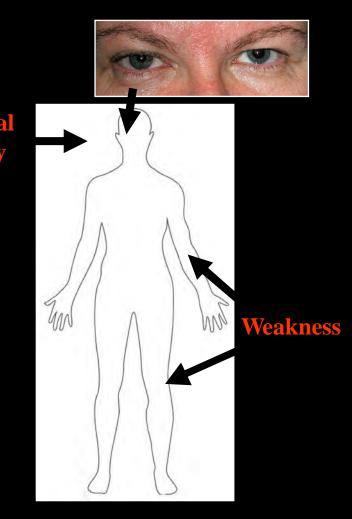
In a 55 years old septic patient: + hyperactive delirium + weakness of the right arm and slight right central facial palsy + Claude Bernard Horner sign + Oedema of the right arm - CT scan and CSF analysis: normal - EEG: slow cortical activity - Biochemistry: moderate renal failure - Blood culture : negative



DELIRIUM WITH FOCAL SIGN IN A SEPTIC PATIENT

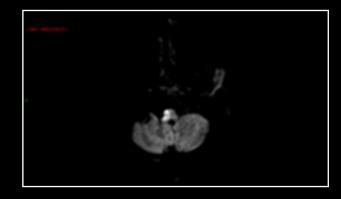
MULTIFACTORIAL

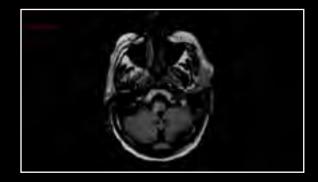
 Left pre-rolandic lesion
 Thrombosis of right jugular vein + goitre
 Methicillin overdose



BE CAREFUL

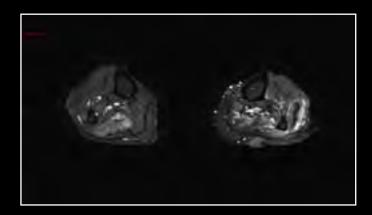
In a 65 years old man lightly sedated for a hypoxemic pneumonia:

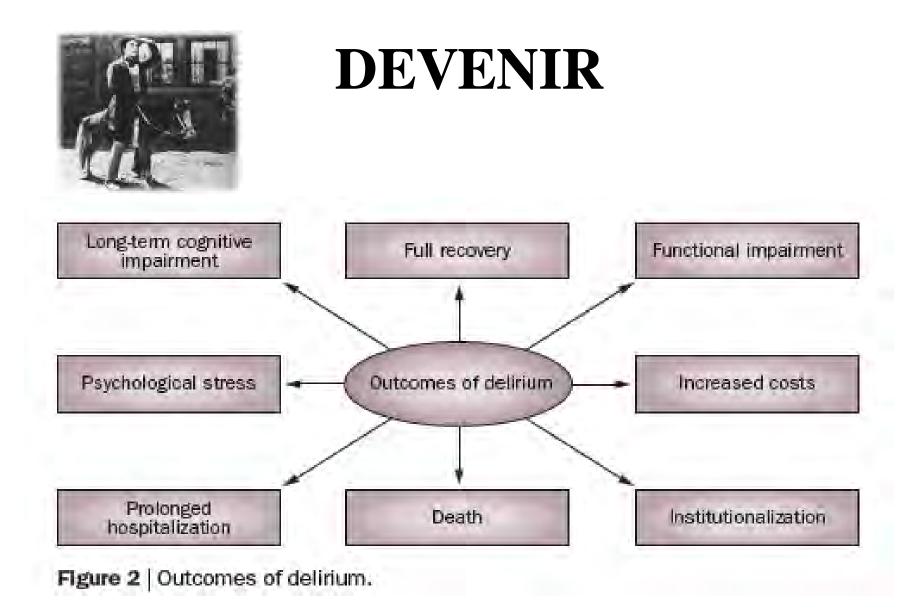

+ no response of the left palsy
arm to painful stimuli
+ a greater hypotonia of the left arm and leg
+ a decreased contraction of the right face to painful stimulation


+ Claude-Bernard Horner sign

FOCAL NEUROLOGICAL SIGNS IN A CRITICALLY ILL PATIENT WITH CEREBROVASCULAR RISK FACTORS AND TREATED BY HEPARIN

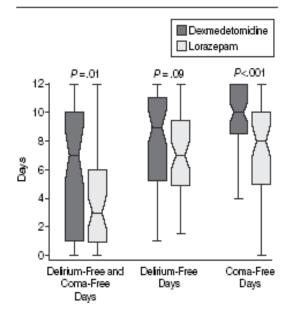
BE CAREFUL




Accounts for all neurological signs

BE CAREFUL

Three days after discontinuation of sedation, the patient developed agitation and delirium. General and neurological examination was not changed. EEG was normal. Agitation and delirium was ascribed to discontinuation of sedation. Three days later, patient complained of pain of the legs and ankles that turned to be due to bacterial and ischemic myositis.



DELIRIUM WITHOUT (new) FOCAL NEUROLOGICAL SIGN IN A RECENTLY NON SEDATED PATIENT

Pratik P. Pandharipande, MD, MSCI Brenda T. Pun, RN, MSN, ACNP Daniel L. Herr, MD Mervyn Maze, MB, ChB Timothy D. Girard, MD, MSCI Russell R. Miller, MD, MPH Ayumi K. Shintani, MPH, PhD Jennifer L. Thompson, MPH James C. Jackson, PsyD Stephen A. Deppen, MA, MS Renee A. Stiles, PhD Robert S. Dittus, MD, MPH Cordon R. Bernard, MD E. Wesley Ely, MD, MPH

Figure 2. Delirium-Free and Coma-Free Days During Study

Effect of Sedation With Dexmedetomidine vs Lorazepam on Acute Brain Dysfunction in Mechanically Ventilated Patients The MENDS Randomized Controlled Trial

JAMA. 2007;298(22):2644-2653

 Table 2. Outcomes in Mechanically Ventilated Patients Sedated With Dexmedetomidine

 vs Lorazepam^a

Outcome Variable	Dexmedetomidine (n = 52)	Lorazepam (n = 51)	P Value
Duration of brain organ dysfunction, d Delirium-free and coma-free ^b	7 (1 10)	240	.01
	7 (1-10)	3 (1-6)	.01
Delirium-free ^b	9 (5-11)	7 (5-10)	.09
Coma-free ^b	10 (9-12)	8 (5-10)	<.001
Delirium	2.5 (1-5)	4 (1-5)	.71
Coma	2 (0-3)	3 (2-5)	.003
Prevalence of brain organ dysfunction, No. (%) ^c			
Delirium or coma	45 (87)	50 (98)	.03
Dəlirium	41 (79)	42 (82)	.65
Coma	33 (63)	47 (92)	<.001
Other clinical outcomes			
Mechanical ventilator-free, d ^d	22 (0-24)	18 (0-23)	.22
Intensive care unit length of stay, d	7.5 (5-19)	9 (6-15)	.92
28-Day mortality, No. (%)	9 (17)	14 (27)	.18

SEDATION and ANALGESIA

N = 304 > 60 ans – Medical ICU

Table 5. Multivariable models for delirium duration $(n = 304)$		
Risk Factor for Delirium Duration	Rate Ratio (95% CI)	p Value ^b
Model 1: Effect of use of opioids or benzodiazepines controlling for dementia, use of haloperidol, and	baseline health status ^a	
Benzodiazepine or opioid use	$1.64 \ (1.27 - 2.10)^c$	$<\!0.001$
Control variables		
Dementia (Informant Questionnaire on Cognitive Decline in the Elderly >3.3)	1.19(1.07 - 1.33)	0.002
Haloperidol	1.35(1.21 - 1.50)	$<\!0.001$
Acute Physiology and Chronic Health Evaluation II Score (minus the Glasgow Coma Scale)	1.01(1.00-1.02)	0.02
Model 2: Modification of effect of use of opioids or benzodiazepines by dementia status: Controlling f	or use of haloperidol and baseline	health status ^a
Effect of benzodiazepines or opioids when dementia is absent	2.42 (1.65-3.55)	< 0.001
Effect of benzodiazepines or opioids when dementia is present	1.08(0.78 - 1.50)	0.64
Model 3: Modification of effect of use of haloperidol by dementia: Controlling for use of opioids or be	enzodiazepines and baseline health	status"
Effect of haloperidol when dementia is absent	1.47 (1.29-1.69)	< 0.001
Effect of haloperidol when dementia is present	1.15 (0.96-1.37)	0.14

^{*a*}The deviance divided by the degrees of freedom for the three models are respectively 0.95, 0.92, and 0.93, providing no evidence of overdispersion; ^{*b*}*p* values are calculated for the Likelihood Ratio Chi-square statistic; ^{*c*}bootstrapped results for this model coefficient yielded a slightly larger but significant confidence interval; rate ratio 1.67, 95% confidence interval (CI) 1.17, 2.27.

The use of benzodiazepines or opioids in the ICU is associated with longer duration of a first episode of delirium. But also: severity of critical ilness, dementia and use of haloperidol

Pisani et al - Crit Care Med - 2009

Internet in March Mill (1998-1998) Den martinen och av at Ca

E. W. Ely S. Gaurtian

R. Margolia J. Francis L. May T.Speruff B. Truman R. Düte-

5. R. Berouid S. K. Inneye

CORDERED AL

The impact of delirium in the intensive care unit on hospital length of stay

Multiple Linear Regression Model: Predictors of Lengths of Stay in ICU and Hospital*

Variable	Length of Hospital Stay (days)				
	Beta	95% C.I.	P Value		
Intercept	1.82	-	~		
Duration of Delirium *	1,18	1.05 -1.32	0.006		
APACHE II	1.01	0.98-1.03	0.61		
Age	1.00	0.99 - 1.00	0.38		
Gender	1.22	0.84 - 1.75	0,30		
Drug Days	1.13	1.01-1.26	0.04		

Using multivariate analysis, delirium was the strongest predictor of length of stay in the hospital (P=0.006) even after adjusting for severity of illness, age, gender, race, and days of benzodiazepine and narcotic drug administration.

IDSC versus CAM-ICU

 Table 3
 Agreement rates between CAM-ICU and ICDSC on days

 1–7 after ICU admission; CI, confidence interval

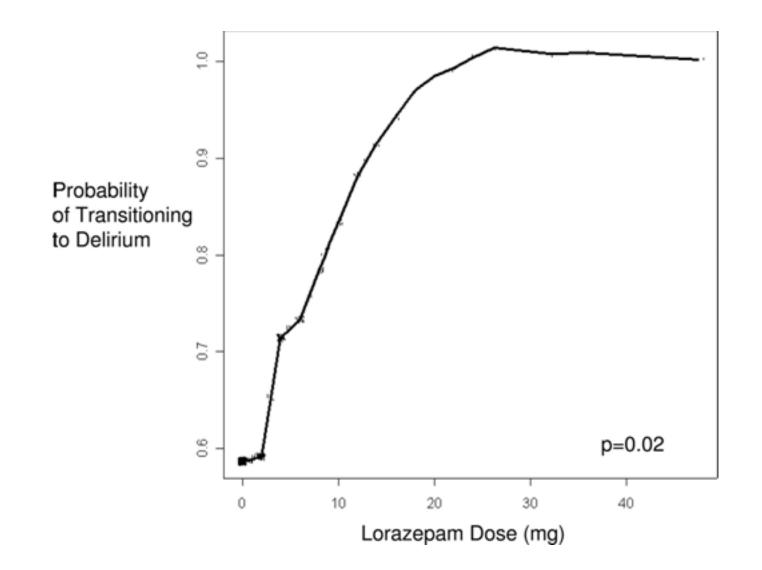
Days on ICU	No. of paired settings	Kappa coefficient (95% CI)		
1	130	0.81 (0.78-0.84)		
2	67	0.86 (0.80-0.90)		
2 3	52	0.80 (0.76-0.84)		
4	42	0.76 (0.74-0.81)		
5	29	0.65 (0.59-0.71)		
6	26	0.68 (0.64-0.73)		
7	28	0.92 (0.88-0.96)		

Kappa coefficient was determined for 1 week following the day of ICU admission (day 1)

Table 4Comparison ofCAM-ICU and ICDSCdelirium ratings in		ICDSC (n)	Negative	Positive	Total
374 paired observations	CAM-ICU n	Negative Positive Total	219 15 234 (63)	20 120 140 (37)	239 (64) 135 (36) 374 (100)

<u>Plaschke et al – ICM - 2008</u>

Intensing Care Mod (2007) 33:66-75 DOI 10 1007/s00134-006-0399-0


ORIGINAL

Schastien Ounnet Brian P. Kavanagh Stewart B. Gottfried Yoanna Skrabik

Incidence, risk factors and consequences of ICU delirium

Variable	р
Age	0.069
Medical history	
Hypertension	0.0047
Active tobacco consumption	0.0123
Alcohol consumption	0.0015
Variables on ICU admission	
APACHE II score	< 0.0001
Medication	
Epidural catheter use	0.0017
Average opiate dose	0.0096
Average benzodiazepine dose	0.0001
Average propofol dose	0.0023
Average indomethacin dose	0.044
ICU stay related factors	
Coma (all types)	< 0.0001
Anxiety	0.0824
Pain	0.0020

Coma related to sedation : Major Risk factor of DELIRIUM (OR 3.22)

Haloperidol prophylaxis for elderly hip-surgery patients at risk for delirium: a randomized placebo-controlled study. Kalisvaart et al J am Geriart Soc 2005

PARTICIPANTS: A total of 430 hip-surgery patients aged 70 and older at risk for postoperative delirium.

INTERVENTION: Haloperidol 1.5 mg/d or placebo was started preoperatively and continued for up to 3 days postoperatively.

RESULTS: The overall incidence of postoperative delirium was 15.8%.

- 1. Postoperative delirium in the haloperidol and placebo was 15.1% and 16.5%, respectively (RR=0.91, 95% CI [0.6-1.3]);
- 2. the mean highest DRS-R-98 score was 14.4+/-3.4 and 18.4+/-4.3 (mean difference 4.0, 95% CI [2.0-5.8]; P<.001);
- 3. delirium duration was 5.4 versus 11.8 days (mean difference 6.4 days, 95% CI [4.0-8.0]; P<.001); and the mean number of days in the hospital was 17.1+/-11.1 and 22.6+/-16.7, respectively (mean difference 5.5 days, 95% CI [1.4-2.3]; P<.001).
- 4. No haloperidol-related side effects were noted.

Multivariate Model of Admission Risk Factors Associated With Delirium in the First 48 Hours of ICU Admission

Table 2. Multivariate Model of Admission Risk FactorsAssociated With Delirium in the First 48 Hoursof ICU Admission (MICU)

Risk Factor	Odds Ratio (95% Confidence Interval)	<i>P</i> Value
Dementia by IQCODE >3.3	6.3 (2.9-13.8)	<.001
Receipt of benzodiazepines before ICU admission	3.4 (1.6-7.0)	.001
Creatinine >2 mg/dL	2.1 (1.1-4.0)	.02
Arterial pH $<$ 7.35	2.1 (1.1-3.9)	.02

Abbreviations: ICU, intensive care unit; IQCODE, Informant Questionnaire on Cognitive Decline in the Elderly.

Pisani, M. A. et al. Arch Intern Med 2007;167:1629-1634.

ARCHIVES OF INTERNAL MEDICINE Intensive Care Med (200) (27: 1297-1388 DOI 10.1007600134000017

DRIGINAL

Marc-Jacques Dubois Nicolas Bergeron Marc Dumont Sandra Dial Yoanna Skrobik

Delirium in an intensive care unit: a study of risk factors

Table 3 Multivariate analysis

Variable	Odds ratio	95% Confidence interval
Hypertension	2.6	1.14–5.72
Smoking history	2.2	0.94-4.94
Bilirubin level ^a (% of days with abnormal level) Use of epidural	1.2 3.5	1.03–1.40 1.20–10.39
Morphine (mean daily dose) ^b 0.01–7.1 mg 7.2–18.6 mg 18.7–331.6 mg	7.8 9.2 6.0	1.76–34.4 2.17–39.0 1.41–25.4

^a Odds ratio expresses a risk increase for each 10% increased of days with abnormal laboratory value

^b Analgesic and sedative medications were respectively transformed as parenteral morphine and lorazepam using equivalent dosage scales [14]

GENETIC: APOLIPOPROTEIN E4 POLYMORPHISMS

Variable	APOE4 Present $(n = 12)$	APOE4 Absent $(n = 41)$	p Values
Days of delirium	4 (3, 4.5)	2(1, 4)	.05
Coma days	1(0, 4.5)	2(0, 5)	.45
ICU length of stay	9.5 (6, 14)	7 (5, 11)	.37
Hospital length of stay	12 (8.5, 17.5)	10 (7, 15)	.45 .37 .53
Ventilator-free days	21.1 (15, 24)	22 (0, 26)	.72
Days on ventilator	5.5 (3.9, 8.9)	4 (2, 8)	.49
Mortality, % (n)	8.3 (1/12)	24.4 (10/41)	.42

APOE4, apolipoprotein E4; ICU, intensive care unit.

^{*a*}All data are presented as median with interquartile ranges with the exception of mortality, which is % (n); ^{*b*}unadjusted *p* values were obtained using Wilcoxon rank-sum tests for all except for mortality, where Fisher's exact test was used.

APOE: role in amyloïdogenesis (Alzheimer disease)

<u>Ely et al – CCM - 2007</u>

PLASMA CORTISOL LEVELS

Table 5 Factors independently associated with delirium after CABG surgery revealed in multivariate stepwise logistic regression analysis^a

Variable	Coefficient	Standard error	Odds ratio (95% CI)	P value
TMT-B ^b	0.016	0.004	1.02 (1.01 to 1.03)	< 0.0001
Greatinine concentration ^b	0.015	0.012	1.02 (0.99 to 1.04)	0.191
Dose of midazolam	0.081	0.028	1.08 (1.03 to 1.15)	0.005
Preoperative cortisol	0.005	0.002	1.005 (1.001 to 1.009)	0.025
Depression [®]	2,389	0.954	10.90 (1.68 to 70.67)	0.012
IL-2 concentration ^c	0002	0.001	1.002 (1.001 to 1.004)	0.004
Constant	-12964	2.725		< 0.0001

CI, confidence interval; TMT-B, Trial Making Test. "The regression model is statistically significant: $\chi^2 = 76.889$; P < 0.001. "Preoperative variable." Postoperative variable.

113 post-operative patients

Kazmierski et al – Crit Care - 2013

BIOMARKERS

	Inflam	ned (n = 46)				Nonin	flamed paties	nts ($n = 5$	54)	
Sector Cardo	Deliri	um (<i>n</i> = 26)	Nonde	lirium ($n = 20$)	P value	Deliri	um (<i>n</i> = 24)	Nonde	lirium (n = 30)	P value
Proinflammatory cytol	kines									
TNF-α (pg/ml)	13	[10-16]	11	[5-18]	0.17	8	[5-13]	7	[5-11]	0.18
IL-1 β (pg/ml)	3	[3-6]	4	[3-17]	0.67	3	[3-6]	3	[3-6]	0.69
IL-6 (pg/ml)	73	[38-143]	41	[21-90]	0.09	50	[29-90]	34	[22-64]	0.047ª
IL-8 (pg/ml)	31	[24-44]	17	[9-26]	< 0.001ª	20	[12-32]	14	[9-22]	0.001 ^a
IL-17 (pg/ml)	4	[3-7]	3	[3-6]	0.22	3	[3-4]	3	[3-3]	0.63
IL-18 (pg/ml)	136	[88-187]	84	[65-132]	0.03*	82	[66-141]	88	[72-120]	0.54
MIF (pg/ml)	438	[294-796]	257	[157-576]	0.13	334	[214-561]	249	[179-702]	0.08
Antiinflammatory cyto	kines					1			C	
IL-1ra (pg/ml)	48	[27-74]	32	[18-47]	0.04 ^a	24	[17-51]	16	[11-25]	0.02 ^a
IL-10 (pg/ml)	23	[13-47]	13	[5-35]	0.08	28	[12-44]	22	[9-46]	0.03 ^a
Chemotactic cytokines										
MCP-1 (pg/ml)	516	[295-822]	251	[199-339]	0.001ª	268	[192-398]	233	[175-306]	0.15
Defensin										
HNP (µg/ml)	0.06	[0.03-0.13]	0.07	[0.03-0.09]	0.60	0.06	[0.04-0.10]	0.04	[0.03-0.10]	0.51
Markers of inflammati	on									
CRP (mg/ml)	84	[56-190]	84	[43-140]	0.40	42	[29-65]	41	[27-64]	0.44
Procalcitonin (ng/ml)	1.0	[0.23-2.0]	0.28	[0.10-0.64]	0.003 ^a	0.22	[0.11-0.55]	0.12	[0.06-0.18]	0.01*
Stress-response hormo	one									
Cortisol (µmol/L)	0.59	[0.34-0.98]	0.48	[0.18-0.61]	0.06	0.46	0.23-0.72	0.30	[0.06-0.66]	0.06

Dosage within the 24h after onset of delirium

Van den Boogaard et al – Crit Care – 2013

AGITATION

Epidémiology

Table 5—Characteristics of Agitation*

Characteristics Data Onset from day of admission, d 4.4 ± 5.6 Duration, d 3.9 ± 4.1 Diurnal occurrence, No. (% of patients) Agitation exclusively during the day 16(17)Agitation exclusively during the night 6(6)Agitation during day and night 73 (77) Tracheal intubation status, No. (% of patients) **Prevalence: 52%** Agitation exclusively during intubated period 14(15)Agitation exclusively during nonintubated 41 (43) (Score de Ramsay) period Agitation during both periods 40(42)Physical restraints, No. of patients/total (%) 43/95 (45) Necessity of physical restraints in previously 29/53 (55) unrestrained patients Necessity of sedatives use in patients with no 13/27 (48) previous sedation Benzodiazepines 8/13 (61) Opioids 4/13 (30) Neuroleptic drugs 7/13 (54) Obvious cause or causes of agitation in all 62/95 (65) agitated patients (pain, anxiety, shock, withdrawal) Medical patients 35/38 (92) Surgical patients 27/57 (47)

Jaber et al – ICM - 2005

*Data are presented as mean \pm SD unless otherwise indicated.

AGITATION

Epidémiology

FIGURE 1. Cumulative distribution of onset of agitation from the day of admission to the ICU.

FIGURE 3. Correlation between duration of agitation and onset of agitation from the day of ICU admission.

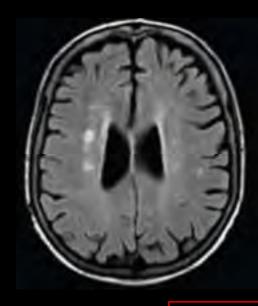
AGITATION RISK FACTORS

Table 4—Independent Risk Factors for the Agitation

Predictive Risk Factors	Odds Ratio	95% CI
Age $\geq 65 \text{ yr}^*$	2.21	0.83-5.93
Medical cause of ICU admission*	3.04	0.85 - 10.54
Sepsis	2.61	1.03-6.58
Alcohol abuse	3.32	1.12 - 10.00
Use of sedatives in 48 h before onset of agitation	4.03	1.62-10.40
Body temperature $\geq 38^{\circ}$	4.52	1.80-11.49
Sodium level $\leq 134 \text{ mmol/L}$	4.87	1.58-14.99
Sodium level \geq 143 mmol/L	4.95	1.95 - 12.54
Long-termc psychoactive drug user	5.63	1.32-23.70

*These risk factors are not significant.

<u>Jaber et al – ICM - 2005</u>


A Prospective Study of Agitation in a Medical-Surgical ICU*

Incidence, Risk Factors, and Outcomes

Samir Jaber, MD, PhD; Gérald Champnes, MD; Claire Altainw, PharmD; Musimpha Sebbane, MD; Christine Vergne, MD; Pierre-François Perriganlt, MD; and Jean-Jacques Eledjam, MD, PhD

Variable	Agitation (n=95)	No agitation (n=87)	р
SAPSII	40 ± 16	33 ± 13	<0.01
Auto-extubation	16.5%	1.7%	0.003
Desinsertion of catheter	15.9%	1.2%	0.01
Duration catheter (d)	16.6 ± 17.1	$6.1 \pm 5,7$	0.0001
Duration of mechanical ventilation (d)	$14.1 \pm 18,7$	$3.5 \pm 5,2$	0.0001
Nosocomial infection (%)	33.7	6.9	<0.0001
(Pneumonia, urinary tract, bacteremia)			
Length of ICU stay (d)	16 ± 19	6 ± 6	0.0001

MRI IN PATIENTS WITH DELIRIUM

Of the eight patients, six (75%) demonstrated white matter hyperintensities, one (12%) had mild atrophy, and no patient had ischemic/hemorrhagic lesions.

<u>Morandi et al – Psychiatry- 2011</u>