

Le SDRA Asymétrique

Pr Hadrien Rozé
Anesthésie Réanimation Thoracique
SAR Sud, Hôpital Haut Leveque, CHU Bordeaux

Conflits d'interet

Getinge / Medtronic / Air Liquide / Draeger / Fisher et Paykel

Grant for Research, Fees for Travel and Lectures

THE LANCET Respiratory Medicine


ARTICLES | VOLUME 2, ISSUE 8, P611-620, AUGUST 01, 2014

Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials

Dr Carolyn S Calfee, MD 😕 Prof Kevin Delucchi, PhD Prof Polly E Parsons, MD Prof B Taylor Thompson, MD

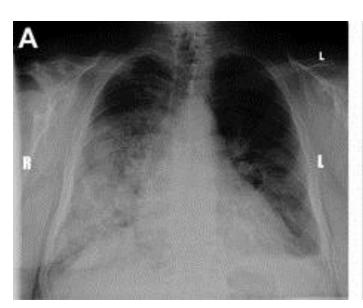
Prof Lorraine B Ware, MD • Prof Michael A Matthay, MD et al. Show all authors

Published: May 19, 2014 • DOI: https://doi.org/10.1016/S2213-2600(14)70097-9 •

ARTICLES | VOLUME 7, ISSUE 10, P870-880, OCTOBER 01, 2019

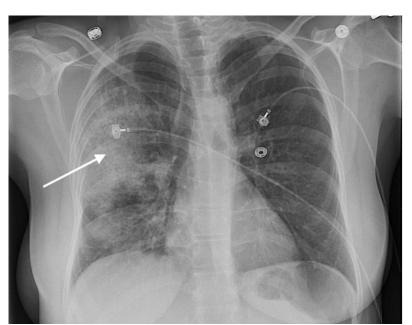
Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial

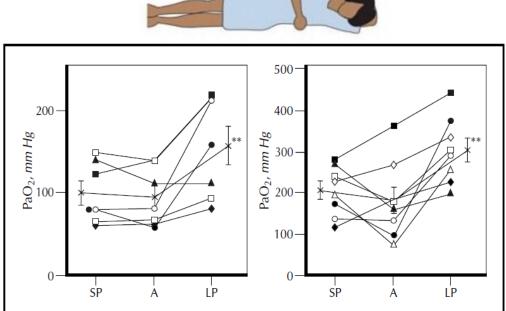
Jean-Michel Constantin, MD $\stackrel{\triangle}{\sim}$ Matthieu Jabaudon, MD Jean-Yves Lefrant, MD Samir Jaber, MD Jean-Pierre Quenot, MD Olivier Langeron, MD et al. Show all authors Show footnotes


Published: August 06, 2019 • DOI: https://doi.org/10.1016/S2213-2600(19)30138-9

Le SDRA est il symétrique?

SDRA Asymétrique? Mais bilatéral!

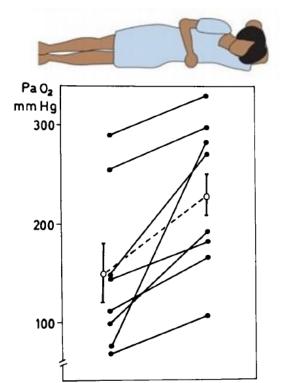

Berlin definition of ARDS (with permission from [22])



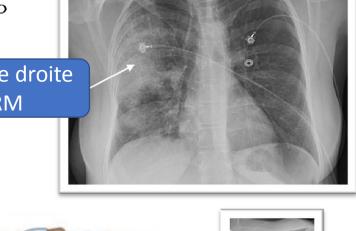
Définition de Berlin Acute respiratory distress syndrome Timing Within 1 week of a known clinical insult or new/worsening respiratory symptoms Chest imaging^a Bilateral opacities—not fully explained by effusions, lobar/lung collapse, or nodules Origin of Edema Kespiratory failure not fully explained by cardiac failure or fluid overload; Need objective assessment (e.g., echocardiography) to exclude hydrostatic edema if no risk factor present Mild Moderate Severe Oxygenation^b $200 < PaO_2/FiO_2 \le 300$ with $100 < PaO_2/FiO_2 \le 200$ with PaO₂/FiO2 ≤100 with PEEP or CPAP >5 cmH₂O^c PEEP > 5 cmH₂OPEEP >5 cmH₂O

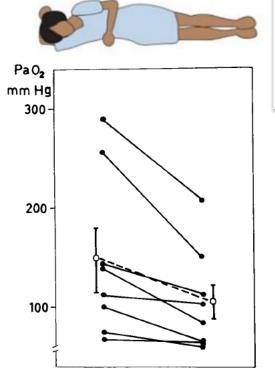
Unilateral lung injury

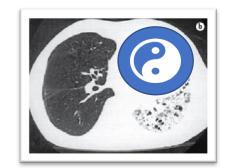
Lluis Blanch, MD, Josefina López Aguilar, PhD, and Ana Villagrá, MD


Positional hypoxemia during artificial ventilation

DANIEL RIVARA, MD; HERNAN ARTUCIO, MD; JOSÉ ARCOS, MD; CARLOS HIRIART, MD


CRITICAL CARE MEDICINE



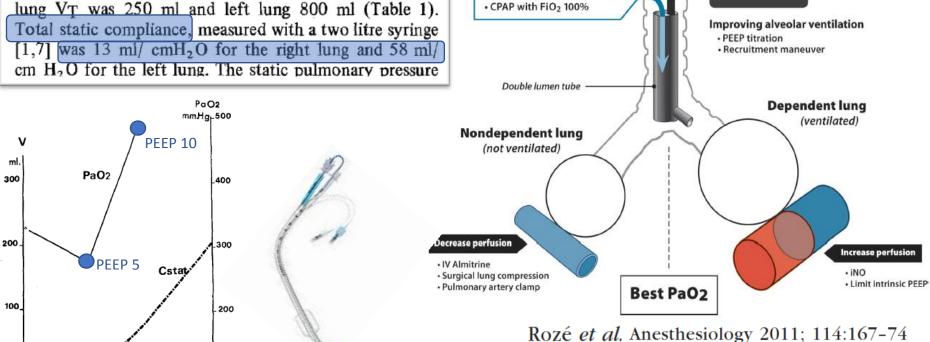

Differential Ventilation in Unilateral Lung Disease: Effects on Respiratory Mechanics and Gas Exchange

Intensive Care Medicine

© by Springer-Verlag 1979

D. Rivara *, J.L. Bourgain 1, P. Rieuf2, A. Harf 3 and F. Lemaire 1

¹Service de Réanimation Médicale (Professeur Rapin), ²Service de Rééducation Fonctionnelle (Pr. Ag. Hamonnet), ³Service d'Exploration Fonctionnelle (Pr. D. Laurent), Hôpital Henri Mondor, F-94010 Créteil, France


Respirator

Even low level PEEP (+ 5) provoked an overdistension of the opposite lung and was ineffective in improving blood gases. Selective ventilation was then applied via a Carlens tube [2]. Initial measurement of separate tidal volumes showed a marked discrepancy between both lungs. Right lung VT was 250 ml and left lung 800 ml (Table 1). Total static compliance, measured with a two litre syringe [1,7] was 13 ml/cmH₂O for the right lung and 58 ml/cm H₂O for the left lung. The static pulmonary pressure

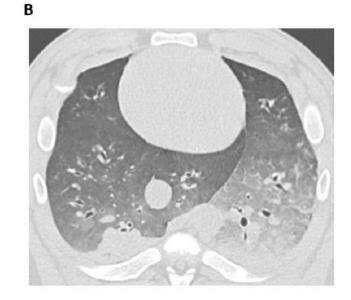
Intens. Care Med. 5, 189-191 (1979)

· Intermittent reventilation

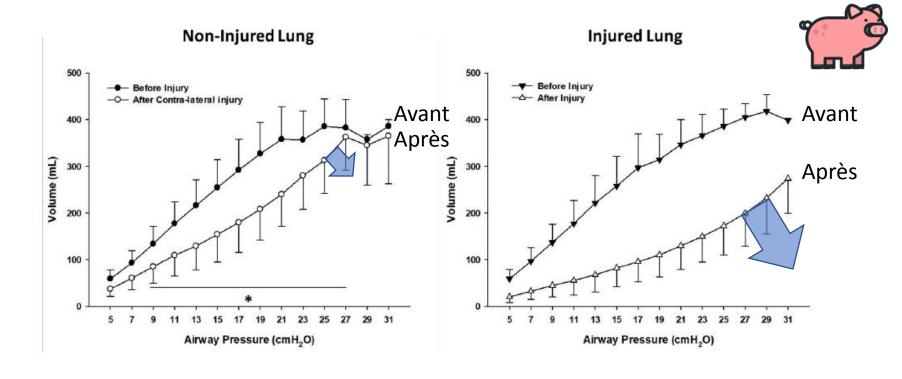
with FiO₂ 100%

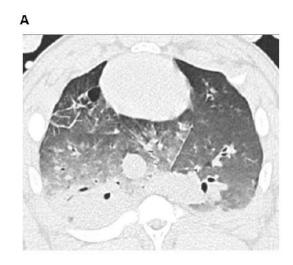

Ventilation unipulmonaire

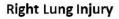
ORIGINAL ARTICLE



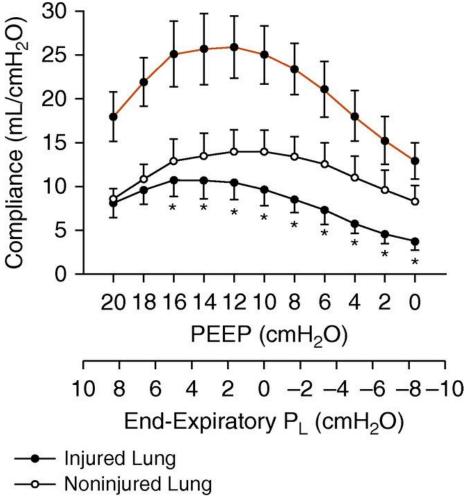
Role of Positive End-Expiratory Pressure and Regional Transpulmonary Pressure in Asymmetrical Lung Injury


Luca Bastia^{1,2}, Doreen Engelberts¹, Kohei Osada¹, Bhushan H. Katira^{1,3,4,5}, L. Felipe Damiani^{1,6}, Takeshi Yoshida⁷, Lu Chen^{4,8}, Niall D. Ferguson^{4,9}, Marcelo B. P. Amato¹⁰, Martin Post^{1,5}, Brian P. Kavanagh^{1,4,5,11,12†}, and Laurent Brochard^{4,8}*




Right Lung Injury

Left Lung Injury



Left Lung Injury

Regional and Respiratory Sytem Compliance

- Respiratory System

ORIGINAL ARTICLE

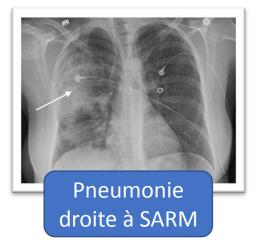
Role of Positive End-Expiratory Pressure and Regional Transpulmonary Pressure in Asymmetrical Lung Injury

Luca Bastia^{1,2}, Doreen Engelberts¹, Kohei Osada¹, Bhushan H. Katira^{1,3,4,5}, L. Felipe Damiani^{1,6}, Takeshi Yoshida⁷, Lu Chen^{4,8}, Niall D. Ferguson^{4,9}, Marcelo B. P. Amato¹⁰, Martin Post^{1,5}, Brian P. Kavanagh^{1,4,5,11,12†}, and Laurent Brochard^{4,8*}

- La PEEP est necessaire pour redistribuer le VT
- La titration de la PEEP avec :
 - La pression mortice trans-pulmonaire optimale
 - Ou la pression transpulmonaire de fin d'expiration= 0

SDRA Asymétrique définition

- Asymétrie à l'auscultation
- Asymétrie sur la radio pulmonaire
- Asymétrie au scanner thoracique
- Asymétrie en échographie pulmonaire (LUS)
- Asymétrie à l'IRM thoracique
- Asymétrie en scintigraphie de ventilation
- Asymétrie en mécanique respiratoire



International Journal of Nursing Studies 39 (2002) 549-555

A randomized trial on the effects of body positions on lung function with acute respiratory failure patients

Myung J. Kim^a, Hee J. Hwang^a, Hae H. Song^{b,*}

Score radiologique entre **0% and 100%** évaluations des surfaces sur la RP. Ils trouvent **62 %** des patient en détresse respiratoire avec une atteinte **unilaterale**

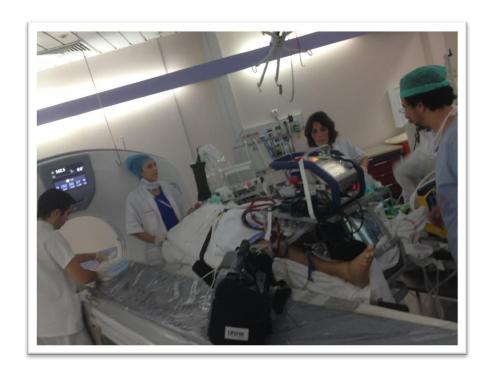
Original Research Chest Infections

Community-Acquired Pneumonia Visualized on CT Scans but Not Chest Radiographs

Pathogens, Severity, and Clinical Outcomes

Cameron P. Upchurch, MD; Carlos G. Grijalva, MD, MPH; Richard G. Wunderink, MD, FCCP;
Derek J. Williams, MD, MPH; Grant W. Waterer, MBBS, PhD; Evan J. Anderson, MD; Yuwei Zhu, MD;
Eric M. Hart, MD; Frank Carroll, MD; Anna M. Bramley, MPH; Seema Jain, MD; Kathryn M. Edwards, MD;
and Wesley H. Self, MD, MPH

CHEST 2018; 153(3):601-610

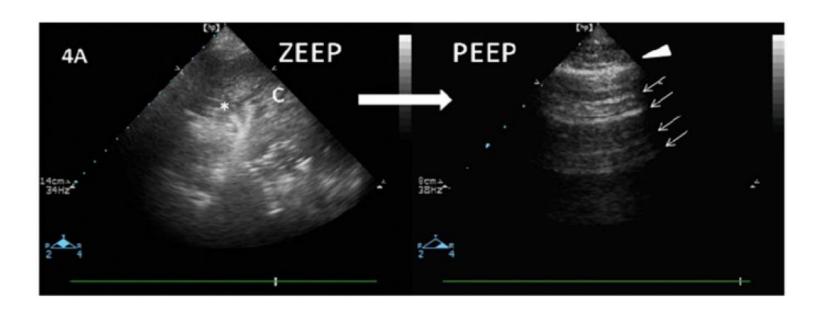

Ils trouvent 9 % de lésions de pneumonie uniquement au scanner

What is the clinical significance of chest computed tomography when the chest x-ray is normal in blunt trauma patients?

Bory Kea, MD,

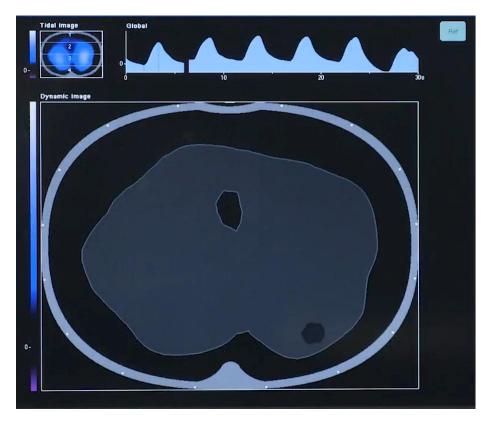
Department of Emergency Medicine, UCSF School of Medicine, San Francisco General Hospital, San Francisco, CA borykea@gmail.com

Ils trouvent 20 % de lésions de contusion en plus au scanner


Bedside Ultrasound Assessment of Positive End-Expiratory Pressure-induced Lung Recruitment

Belaïd Bouhemad¹, Hélène Brisson¹, Morgan Le-Guen¹, Charlotte Arbelot¹, Qin Lu¹, and Jean-Jacques Rouby¹

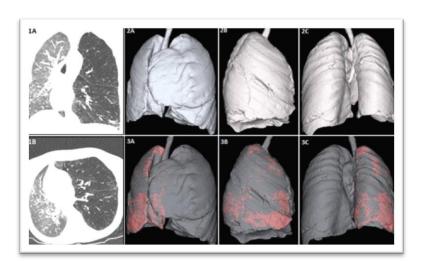
¹Multidisciplinary Intensive Care Unit Pierre Viars, Assistance Publique Hôpitaux de Paris, UPMC (Université Pierre et Marie Curie) Paris-6, Department of Anesthesiology and Critical Care Medicine, La Pitié-Salpêtrière Hospital, Paris, France


Am J Respir Crit Care Med Vol 183. pp 341-347, 2011

Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group

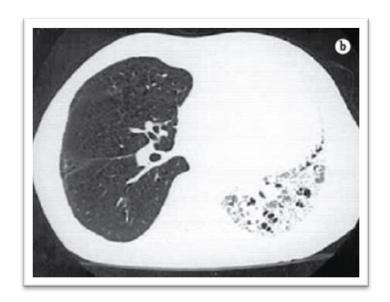
Inéz Frerichs, ¹ Marcelo B P Amato, ² Anton H van Kaam, ³ David G Tingay, ⁴ Zhanqi Zhao, ⁵ Bartłomiej Grychtol, ⁶ Marc Bodenstein, ⁷ Hervé Gagnon, ⁸ Stephan H Böhm, ⁹ Eckhard Teschner, ¹⁰ Ola Stenqvist, ¹¹ Tommaso Mauri, ¹² Vinicius Torsani, ² Luigi Camporota, ¹³ Andreas Schibler, ¹⁴ Gerhard K Wolf, ¹⁵ Diederik Gommers, ¹⁶ Steffen Leonhardt, ¹⁷ Andy Adler, ⁸ TREND study group

SDRA Asymétrique etiologies


Lung (2021) 199:29-35 https://doi.org/10.1007/s00408-020-00417-3

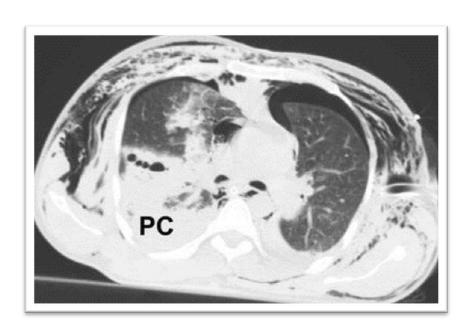
LUNG TRANSPLANTATION

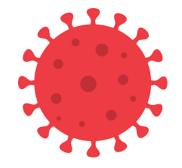
Utilization of Quantitative Computed Tomography Assessment to Identify Bronchiolitis Obliterans Syndrome After Single Lung Transplantation


Douglas Zaione Nascimento¹ · Guilherme Watte² · Felipe Soares Torres³ · Sadi Marcelo Schio¹ · Leticia Sanchez¹ · Jackeline Larissa Mendes de Sousa¹ · Fabiola Adelia Perin¹ · Nupur Verma⁴ · Tan-Lucien H. Mohammed⁴ · Bruno Hochhegger²

Computed tomography findings of postoperative complications in lung transplantation*, **

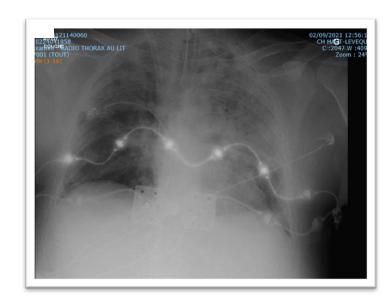
Achados tomográficos nas complicações pós-operatórias do transplante pulmonar


Bruno Hochhegger, Klaus Loureiro Irion, Edson Marchiori, Rodrigo Bello, José Moreira, José Jesus Camargo



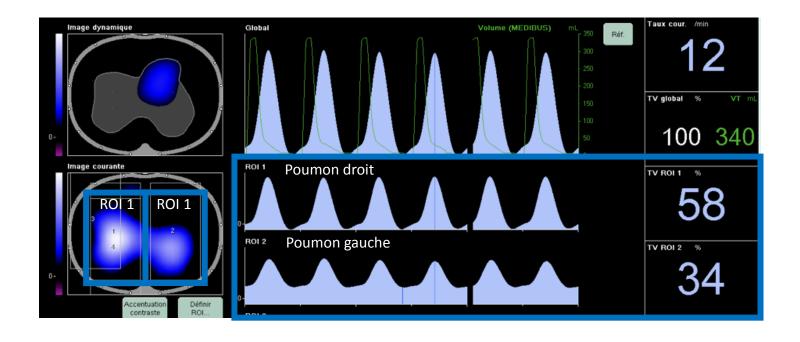
Chirurgie pulmonaire et transplantation unipulmonaire

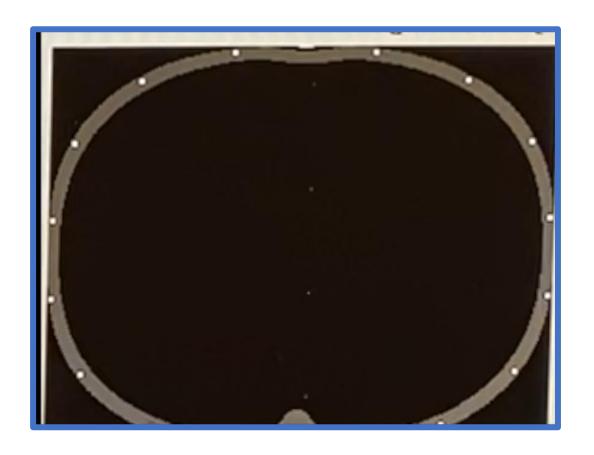
SDRA Asymétrique etiologies



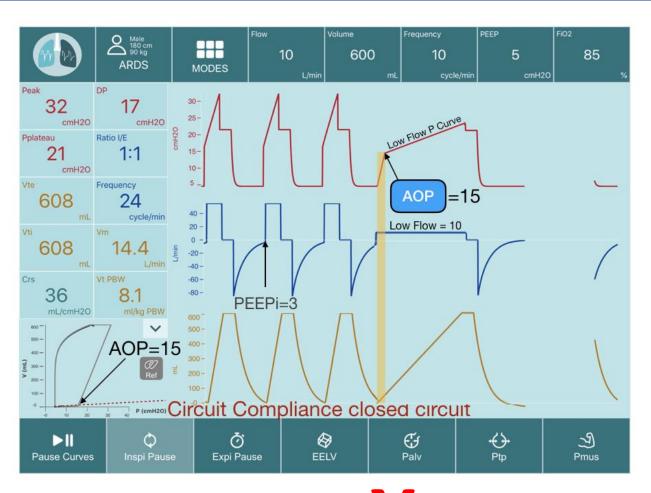
SDRA Asymétrique implications

• Si **SDRA asymétrique**

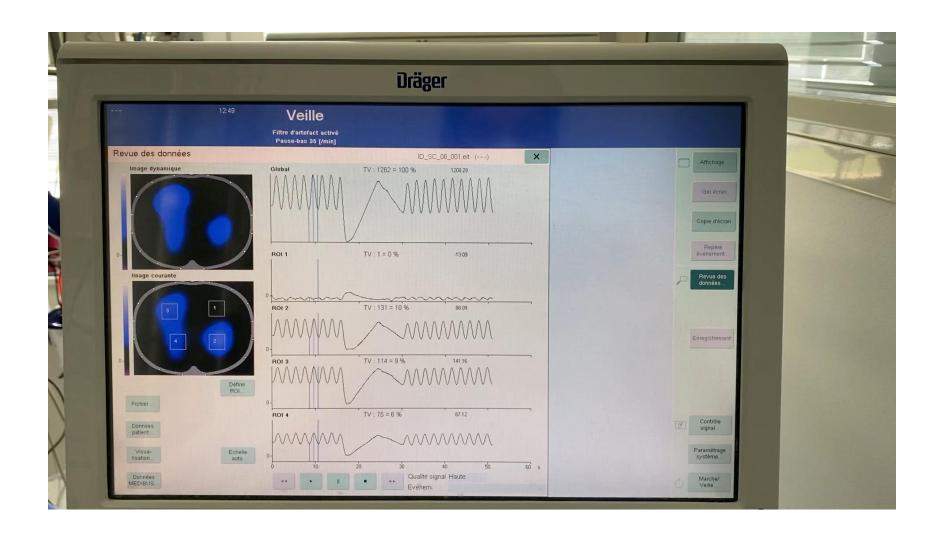

- Evaluer la mécanique respiratoire séparément
 - Ventilation unipulmonaire
 - EIT couplée au ventilateur



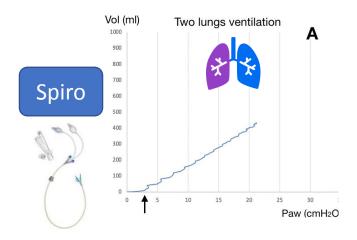
SDRA % ventilation EIT (D vs G)


Différence de ventilation droite - gauche > 20%

SDRA asymetrie de ventilation EIT

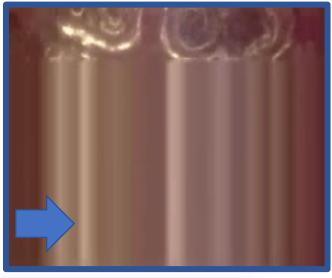

Asymétrie et Airway closure

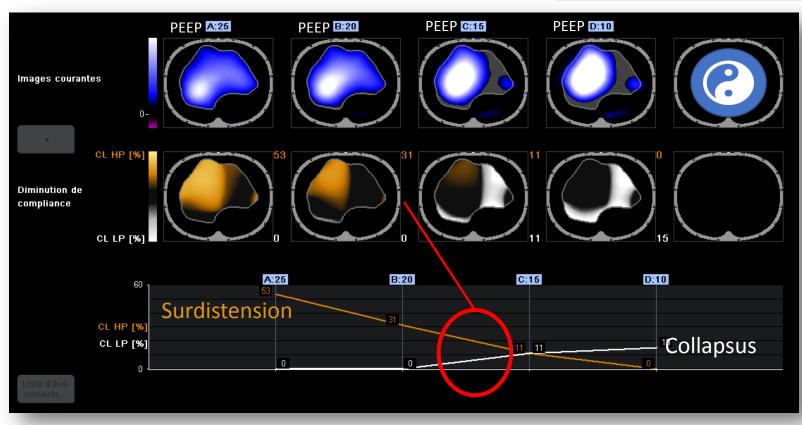
Courbe PV débit lent en ZEEP

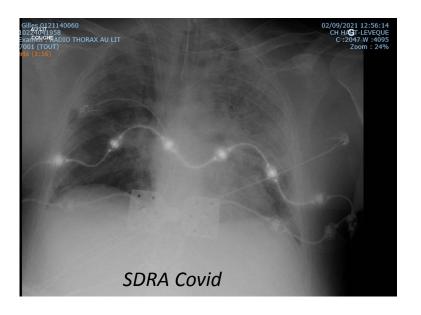


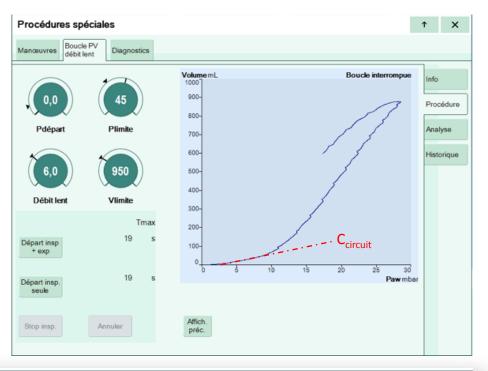
En VAC Paw_(t) = PEEP_{tot} +
$$\frac{1}{2}$$
 R + $V_{T(t)}/C_{rs}$

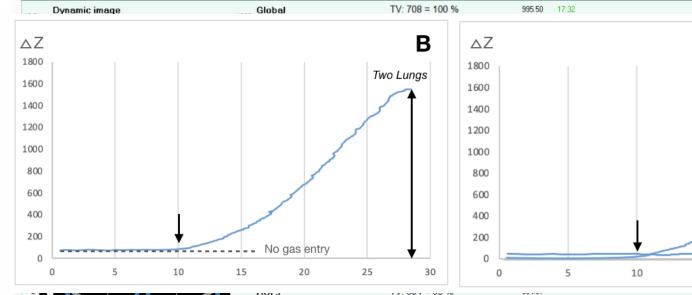
Courbe PV débit lent en ZEEP

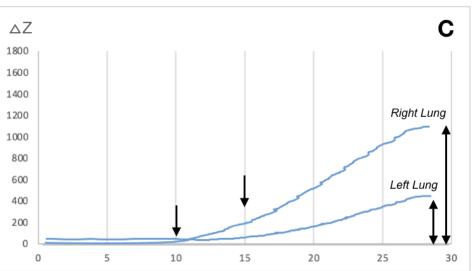



SDRA airway closure EIT (D vs G)



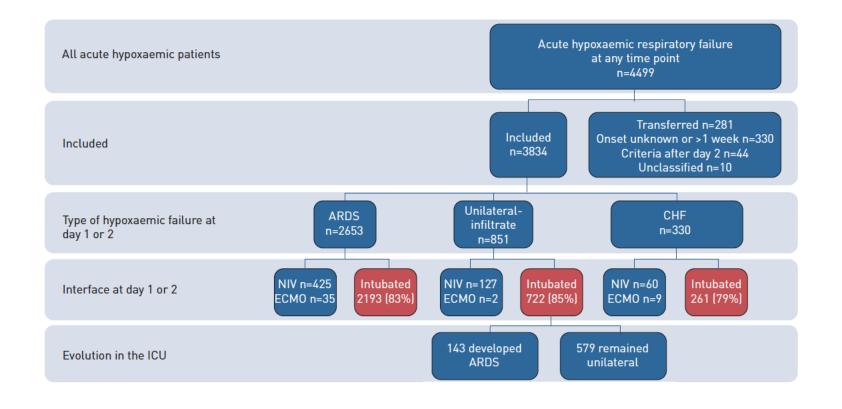

EIT

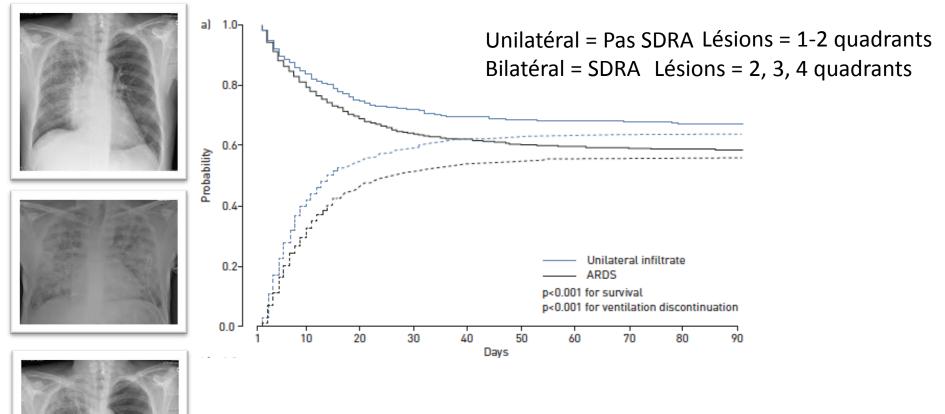

Réglages



~Paw [mbar]

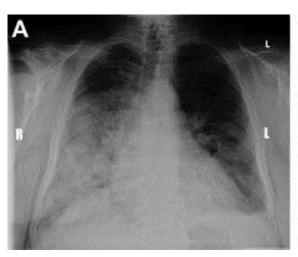
	Age (<i>yr</i>)	BMI (kg/m²)	Cause of ARDS	SOFA	FI _{O2} (%)	Pa _{O2} /Fi _{O2} PEEP _{baseline}	Pa _O /Fl _{O2} PEEP _{Final}	PEEP _{baseline} / PEEP _{Final} (cm H ₂ O)	Crs _{baseline} (ml/cm H ₂ 0)	Crs PEEP _{Final} (ml/cm H ₂ O)	AOP PV Curve (cm H ₂ O)	AOP EITglobal (cm H ₂ O)	AOP EIT Low Side A/B/C/D (cm H ₂ O)	AOP EIT High Side A/B/C/D (cm H ₂ O)
Patient no.	78	27	Pneumoniae	35	100	67	170	12/15	36	34	9	9	11	17
'			thymectomy										11/11/11	16/NGE
2	43	17	Pleuro- pneumoniae	40	55	140	332	8/17	23	30	3	3	3 3/3/NGE	17 17/NGE
3	60	20	Pneumoniae lung resection	39	75	75	107	5/7	29	29	2	3	4 1/4/4	7 7/7/7
4	67	35	Pneumoniae pneumonectomy	60	70	91	118	6/10	33	40	9	9		9 9/9/9
5	45	27	SARS-CoV-2	55	30	248	245	8/8	15	19	2	2	3 8/3/	7 NGE/8/7
6	50	28	SARS-CoV-2	50	45	212	257	8/10	19	19	10	9	11 11/11/11	12 12/12/12
7	63	31	Pneumoniae esophagectomy	55	40	150	174	10/12	21	24	7	8	6 6/6/6	12 12/12/14
Median (IQR)	E (45–67)	27 (20–31)	—	45 (38–56)	55 (40–75)	140 (75–212)	174 (118–257)	8/10 (6–10)/(8–15)	23 (19–33)	29 (19–34)	7 (2–9)	8 (3–9)	5 (3–11)	12 (7–17)


Definition of abbreviations: AOP = airway opening pressure; ARDS = acute respiratory distress syndrome; BMI = body mass index; Crs = respiratory system compliance; EIP = electrical impedance tomography; EIT = electrical impedance tomography; Flo₂ = fraction of inspired oxygen; IQR = interquartile range; NGE = no gas entry; PEEP = positive end-expiratory pressure; PV = pressure-volume; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; SOFA = Sequential Organ Failure Assessment.


Region of interest of AOPs: A = A global one lung; B/C/D: B upper nondependent / C middle lung / D lower dependent.

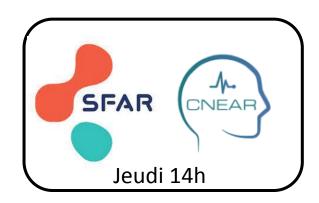
Outcome of acute hypoxaemic respiratory failure: insights from the LUNG SAFE Study

Tài Pham 12,2,3,4, Antonio Pesenti,6, Giacomo Bellani,8, Gordon Rubenfeld, Eddy Fan^{10,11}, Guillermo Bugedo, José Angel Lorente, Antero do Vale Fernandes, Frank Van Haren^{17,18,19}, Alejandro Bruhn, Fernando Rios, Andres Esteban, Luciano Gattinoni 2, Anders Larsson, Daniel F. McAuley 2, Marco Ranieri, B. Taylor Thompson, Hermann Wrigge, Laurent J. Brochard, B. Taylor G. Laffey 1,2,30,31,32, on behalf of the LUNG SAFE Investigators and the European Society of Intensive Care Medicine Trials Group



Nouvelle définition du SDRA

• Faut-il garder INFILTRATS BILATEREAUX ?


Tài Pham ^{1,2,3,4}, Antonio Pesenti^{5,6}, Giacomo Bellani^{7,8}, Gordon Rubenfeld⁹, Eddy Fan^{10,11}, Guillermo Bugedo¹², José Angel Lorente^{13,14,15}, Antero do Vale Fernandes¹⁶, Frank Van Haren^{17,18,19}, Alejandro Bruhn¹², Fernando Rios²⁰, Andres Esteban²¹, Luciano Gattinoni ²², Anders Larsson²³, Daniel F. McAuley ^{24,25}, Marco Ranieri²⁶, B. Taylor Thompson²⁷, Hermann Wrigge^{28,29}, Laurent J. Brochard^{1,2,32} and John G. Laffey ^{1,2,30,31,32}, on behalf of the LUNG SAFE Investigators and the European Society of Intensive Care Medicine Trials Group

Messages de fin pour la maison/réa

- Airway closure et airway opening pressure peuvent être différents sur chaque poumon
- Le point d'inflexion de la courbe PV globale représente le poumon le moins lésé
- Une PEEP supérieure au point d'inflexion permet de maintenir les voies aériennes ouvertes et tout le poumon ventilé.
- Une diminution du V_T diminue le risque de surdistension du poumon moins malade.

MERCI

