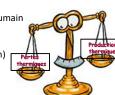
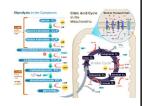


Lewis FJ et al. Surgery 1953;33:52-9

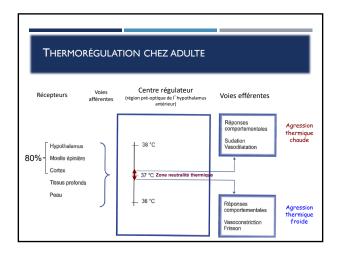

INTRODUCTION

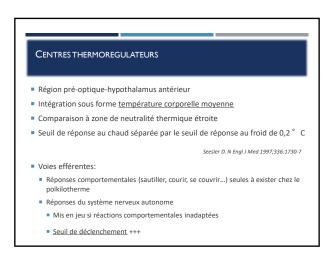
- Homéothermes (humain et mammifères)
- Système thermorégulateur
- Maintien température <u>centrale</u> $37\pm0.2^{\circ}$ C
- Zone de neutralité thermique
- Système régulateur : récepteurs (chaud et froid), voies afférentes, centre thermorégulateur, voies efférentes
- \neq Poïkilotherme : T $^{\circ}$ corporelle dépend du milieu ambiant

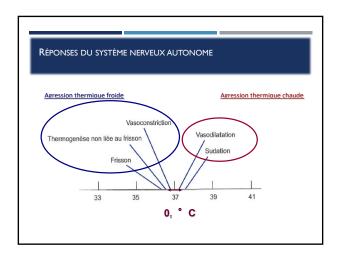

TEMPERATURE CENTRALE

- Etat physique
- Reflet contenu de chaleur du corps humain
- Bilan thermique (pertes vs production)
- Equilibre « finement régulé »

PRODUCTION DE CHALEUR

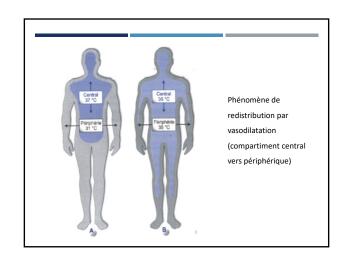

- Métabolisme oxydatif nutriments
- Consommatrice d'oxygène




PERTES DE CHALEUR

- Radiation:
- Sous forme rayonnement thermique (longueur d'onde dépend de la température)
- Convection
 - Refroidissement de la peau par le vent (ventilateur) ou par l'eau
- Conduction
 - Transfert de chaleur entre 2 objets en contact direct l'un avec l'autre (sur le sol, sur la table...)
- Evaporation:
- Sudation +++
- Pertes insensibles (respiration) 600 mL/24h = 390 Kcal/24h

Pertes de Chaleur 90% se font au travers de la peau Par rayonement (50%) Par évaporation (22%) Par convection (15%) Par conduction (3%) 10% par évaporation lors de la respiration



Vasodilatation
 A ccroit le flux sanguin dans les capillaires cutanés (jusque 7,5 l/min)
 Transfert de chaleur du comportement central vers le compartiment périphérique
 Elimination par sudation (synchronisation avec 2ème mécanisme)

 Sudation
 Changement de l'état de l'eau consommateur d' énergie (4,5 kl/ml de sueur)
 Perte d' autant importante que air au contact de la peau sera sec et renouvelé
 Mécanisme limité par le débit maximal de sueur

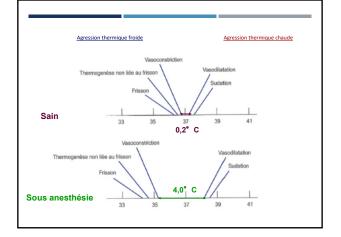
Deux phénomènes couplés et donc synchrones +++

A L'AGRESSION THERMIQUE FROIDE

- Vasoconstriction
 - Extrémités (doigts, orteils,...)
 - Réduction surface d'échange de chaleur entre peau et environnement mais aussi entre la compartiment central et périphérique
- Frisson
 - Seuil de déclenchement < 1° C
 - Activité musculaire oscillatoire involontaire
 - Augmentation production chaleur (jusqu'à X6)
 - Consommation en oxygène (chute de la SvO₂)
 - Libération hormones de stress et catécholamines (morbidité cardiovasculaire potentielle)

Deux phénomènes découplés et asynchrones +++

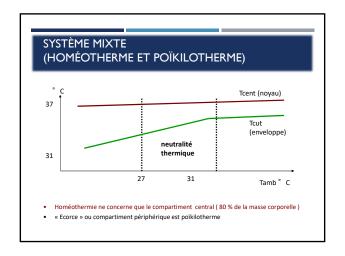
Thermogénèse non liée au frisson

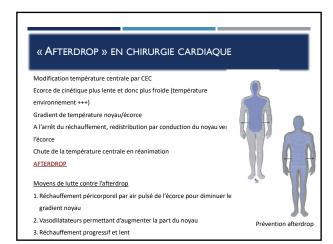

- Efficace surtout chez l'enfant
- Production métabolique de chaleur
- Muscles squelettiques et graisse brune
- Augmentation de la VO₂ sans production de travail mécanique
- Stimulée par libération adrénergique

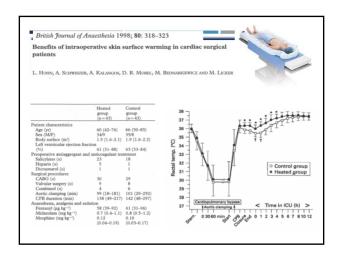
MODULATON RÉPONSES SYSTÈME NERVEUX AUTONOME (1)

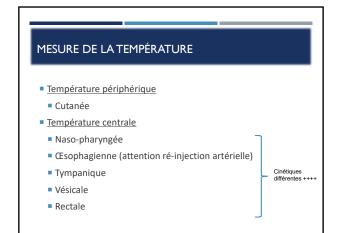
- Variation seuil de déclenchement
 - Elargissement de la zone neutralité thermique
 - Diminution seuil de réponse à l'agression thermique froide
 - Augmentation seuil de réponse à l'agression thermique chaude
- Moindre adaptation aux conditions thermiques environnementales
- Tendance à l' hypothermie

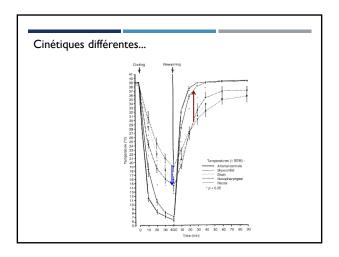
MODULATON RÉPONSES SYSTÈME NERVEUX AUTONOME

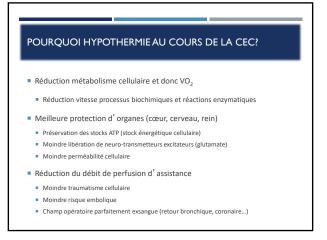

- Age
- Substances: catécholamines, sérotonine, acétylcholine, peptides,
- Hormones sexuelles (décalage thermique du cycle menstruel)
- Paramètres physiques: pression artérielle, douleur
- Niveau d'éveil (cycle circadien, baisse température durant le sommeil)
- Alcool (sensible au froid de l' environnement)
- Hyperglycémie
- Médicaments (agents anesthésiques +++)

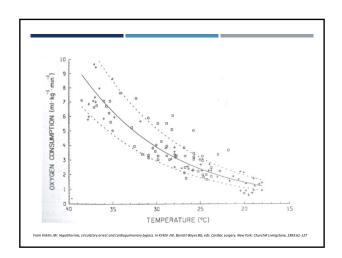


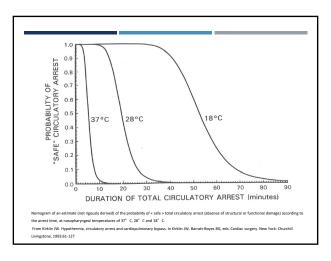

THERMORÉGULATION ET ANESTHÉSIE

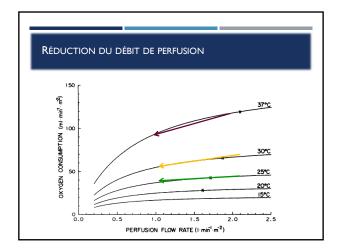

- Inhibition de la thermogénèse sans frisson
- Vasodilatation périphérique
- Réduction de la production de chaleur de 20%
- Hypothermie centrale importante: redistribution de la chaleur dans l' organisme du noyau vers la périphérie

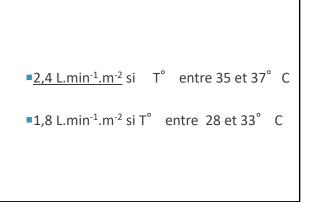

| Compartiment central (axe cerveau, médiastin, organes digestifs) | Température régulée autour de 37° C | Valeur optimale fonctionnement systèmes enzymatiques et mécanismes cellulaires | Compartiment périphérique (muscles=45% de masse corporelle) | Température est peu régulée | < 2 à 4° C du compartiment central | Température dépend de la température centrale et environnementale | Zone d'échanges par conduction entre les deux compartiments | Zone tampon | Stockage et perte de chaleur | Préserve la mise en jeu du système thermorégulateur lors de modification du contenu de chaleur










LES HYPOTHERMIES... Hypothermie légère 34-36° C Hypothermie modérée 32-34° C Hypothermie profonde < 30° C Arrêt circulatoire + cérébro-plégie 24-26° (Kazui et al. Ann Thorac Surg 1994) Arrêt circulatoire 18-20° C (Crepps et al. Ann Thorac Surg 1987)

HYPOTHERMIE ET SYSTÈME NERVEUX

- Hypothermie diminue le métabolisme cérébral et DSC
- Diminution de la libération des neurotransmetteurs (rôle neuroprotecteur)
- Perte de conscience à partir de 28° C
- Perte de la constriction pupillaire à 25° C
- Vitesse de conduction nerveuse diminue
- Tonus musculaire augmente

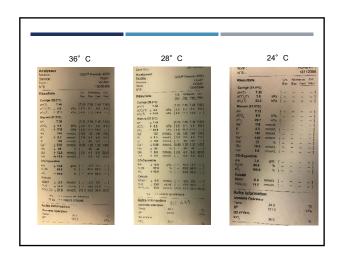
HYPOTHERMIE ET EEG

- EEG isoélectrique pour une T° C < 25 $^{\circ}$ C (BIS < 20+++)
- 21-24° C: pertes des composantes corticales précoces PES
- 13-18° C: perte des composantes sous corticales

HYPOTHERMIE ET SYSTÈME CARDIOVASCULAIRE

- Hypothermie légère (jusque 34°C)
- Mise en jeu des mécanismes thermorégulateurs (tachycardie, vasoconstriction, augmentation du débit cardiaque, HTA modérée)
- Hypothermie modérée (30-34° C)
 - Mécanismes thermorégulateurs sont dépassés
 - Bradycardie (répondant mal à l'atropine)
 - Effet inotrope négatif
 - Diminution débit cardiaque et pression artérielle
 - Augmentation des RVS (activité sympathique, catécholamines, viscosité sanguine)
 - Vasodilatation splanchnique
 - Diminution du seuil arythmogène

HYPOTHERMIE ET SYSTÈME CARDIOVASCULAIRE

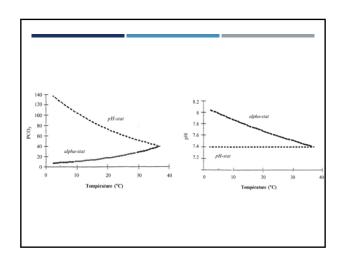

- A partir de 28° C:
- Trouble de conduction sino-atriale et auriculo-ventriculaire (anomalies des courants sodiques, potassiques et calciques)
- Irritabilité ventriculaire
- Fibrillation ventriculaire

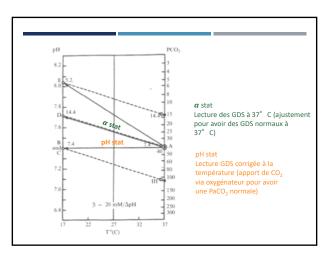
SYSTÈME RESPIRATOIRE

- Diminution ventilation minute proportionnelle à diminution
 de la VO₂
- Diminution réponse au CO₂ et à l' hypoxémie
- Diminution réflexe de toux et de la clairance mucociliaire

EQUILIBRE ACIDO-BASIQUE ET OXYGÉNATION

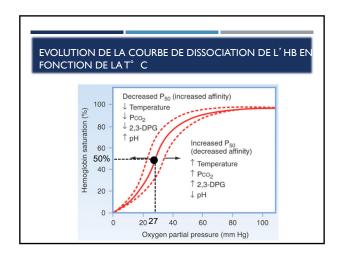
- Augmentation du coefficient de solubilité du CO₂
- Baisse de la production de CO₂ (diminution du métabolisme cellulaire)
- Baisse de la PaCO₂ et augmentation pH (alcalose)
- Déplacement de la courbe dissociation Hb vers la gauche (augmentation affinité de l'O₂ pour l' Hb)

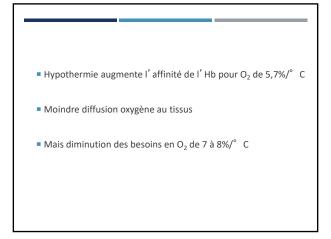

RÉGULATION ALPHA-STAT OU PH-STAT AU COURS DE L'HYPOTHERMIE

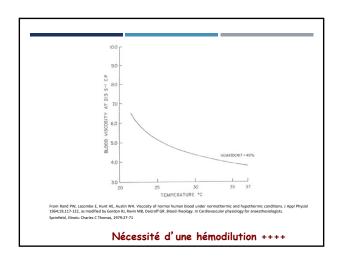

Théorie régulation alpha-stat

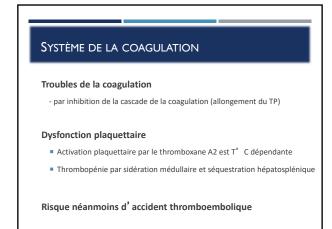
- Mécanismes régulateurs de neutralité électro-chimique au cours de l'hypothermie ont pour objectif de maintenir constant le degré de dissociation $\pmb{\alpha}$ (rapport formes dissociées/non dissociées) du radical imidazole de l'histidine intra-cellulaire
- Rôle majeur dans la conservation des propriétés enzymatiques tissulaires
- Etat acido-basique défini par des valeurs de ${\rm PCO}_2$ et de ${\rm pH}$ variables selon la température

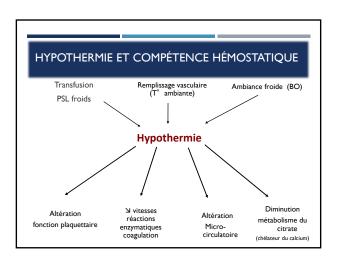
- Théorie de régulation pH-stat


 pH qui représente la variable régulée
- Augmentation du CO₂ total (hypoventilation alvéolaire ou apport exogène)

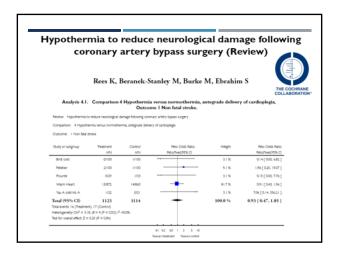


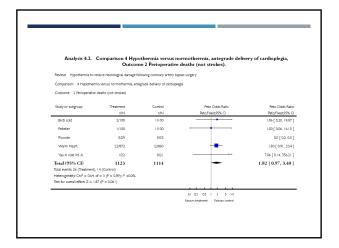

irham, NC reprost requests to Frank H. Bern, MD, Box 3046, Depart-nesthessology, Duke University Medical Center, Dorham, NC tamperature unique, uniqui paperentature, s. 6.7; marco m-crease, and intracellular pdf becomes acidosic in most unique. The acidote state causes a forther depression of metabolism, which is useful in confluctioning thous.

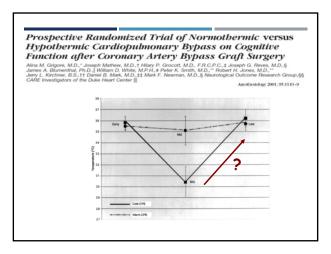

Recommendations	Classa	Level ^b	Ref ^c
Alpha-stat acid-base manage- ment should be applied in adult cardiac surgery with moderate to mild hypothermia because neu- rological and neurocognitive out- comes are improved.	lla	В	[179-181]
Maintenance of a normal pH (7.35–7.45) and avoidance of hyperchloraemic acidosis should be considered in order to reduce the risk of postoperative complications.	lla	В	[177]
Magnesium sulphate may be considered perioperatively for prophylaxis of postoperative arrhythmias.	IIb	В	[183-185]



MODIFICATIONS HYDRO-ÉLECTROLYTIQUES Séquestration liquidienne Rétention aiguë d'urine Iléus paralytique et stase des sécrétions digestives Augmentation viscosité sanguine Hyperglycémie par insulinopénie relative

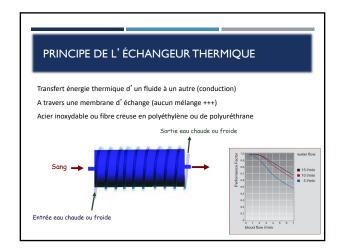



SYSTÈME IMMUNITAIRE Diminution chimiotactisme des polynucléaires Diminution phagocytose des bactéries



MODIFICATIONS PHARMACOLOGIQUES DE L' HYPOTHERMIE

- Complexe car modifications multiples
- Diminution du volume de distribution des médicaments par réduction de la circulation musculaire et cutanée: augmentation de leur concentration sanguine
- Diminution filtration glomérulaire
- Diminution filtration hépatique: prodrogues non métabolisées



RÈGLES DE BONNE PRATIQUES DU REFROIDISSEMENT ET DU RÉCHAUFFEMENT

- \blacksquare Deux sites de mesures si hypothermie profonde (<28 $^{\circ}$ C)
- Gradient entre température sang veineux et eau échangeur thermique < 10° C
- Gradient de température veineuse et artériel < 2-3 ° C
- Gradient de température rectale et naso-pharyngée < 10° C
- Pas de ré-injection artérielle > 37,5° C
- Refroidissement 1° C/3min (risque de lésions cérébrales si > 1° C/2min)
- Réchauffement ne doit pas être supérieur à 1° C/5 min (risque hyperthermie cérébrale, solubilité des gaz diminue avec l'augmentation de la température)

GÉNÉRATEUR THERMIQUE (« BLOC CHAUD-FROID »)

- Réchauffer ou refroidir le sang du circuit de CEC
- Echangeur thermique
- Plusieurs compartiments indépendants
- Refroidissement : eau froide ou bloc de glace (alimentation électrique constante+++)
- Procédure de maintenance (+++)

