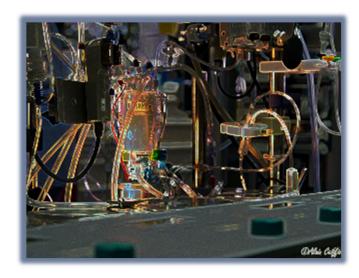


CONSEQUENCES PHYSIOPATHOLOGIQUES DE L'HYPOTHERMIE


Prof. Alexandre OUATTARA

Département d'Anesthésie-réanimation cardio-vasculaire,

INSERM, UMR 1034 Biologie des maladies cardiovasculaires

Hôpital Haut-Lévêque, CHU Bordeaux, 33600 Pessac, FRANCE

University of Minnesota

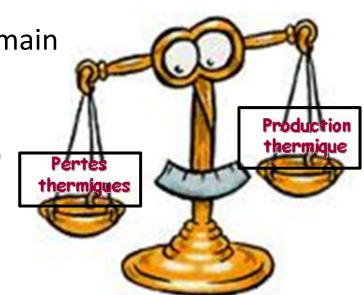
Hospital operating room on September 2, 1952 near the end of the first successful open heart operation in medical history.

Dr. F. John Lewis closed an atrial septal defect under direct visualization using inflow stasis and moderate total body hypothermia (26°C).

In a 5-year-old girl who remains alive and well today. Postoperative heart catheterization confirmed a complete closure.

INTRODUCTION

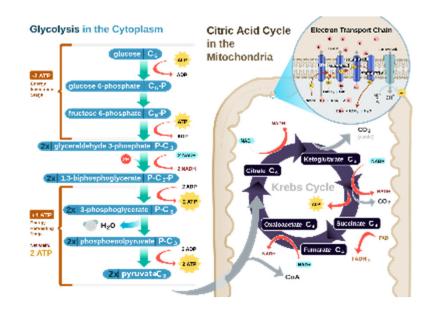
- Homéothermes (humain et mammifères)
- Système thermorégulateur
- Maintien température <u>centrale</u> 37±0,2° C
- Zone de neutralité thermique
- Système régulateur : récepteurs (chaud et froid), voies afférentes, centre thermorégulateur, voies efférentes
- ≠ Poïkilotherme : T° corporelle dépend du milieu ambiant


TEMPERATURE CENTRALE

• Etat physique

Reflet contenu de chaleur du corps humain

• Bilan thermique (pertes vs production)


• Equilibre « finement régulé »

PRODUCTION DE CHALEUR

Métabolisme oxydatif nutriments

Consommatrice d'oxygène

Pertes de Chaleur

Radiation:

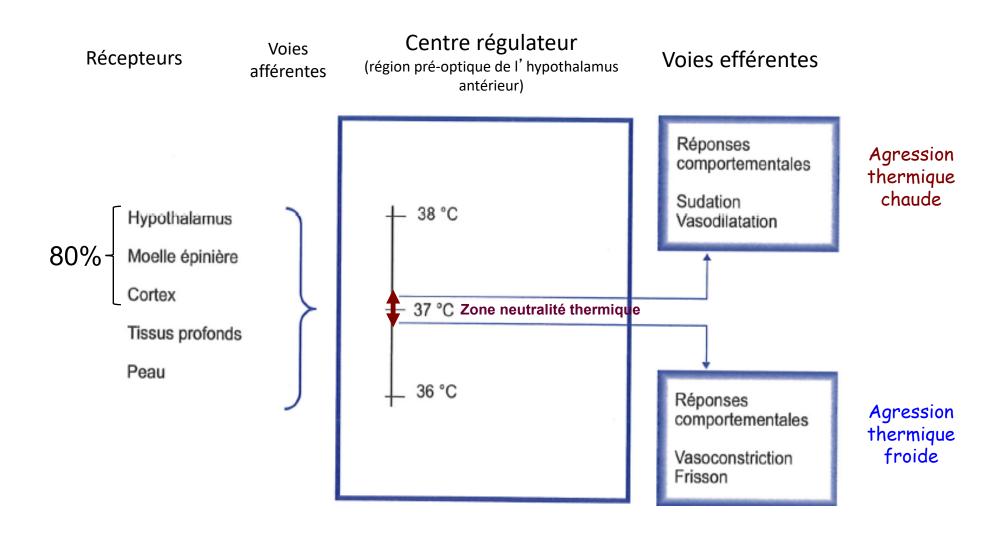
Sous forme rayonnement thermique (longueur d'onde dépend de la température)

Convection

Refroidissement de la peau par le vent (ventilateur) ou par l'eau

Conduction

 Transfert de chaleur entre 2 objets en contact direct l'un avec l'autre (sur le sol, sur la table...)

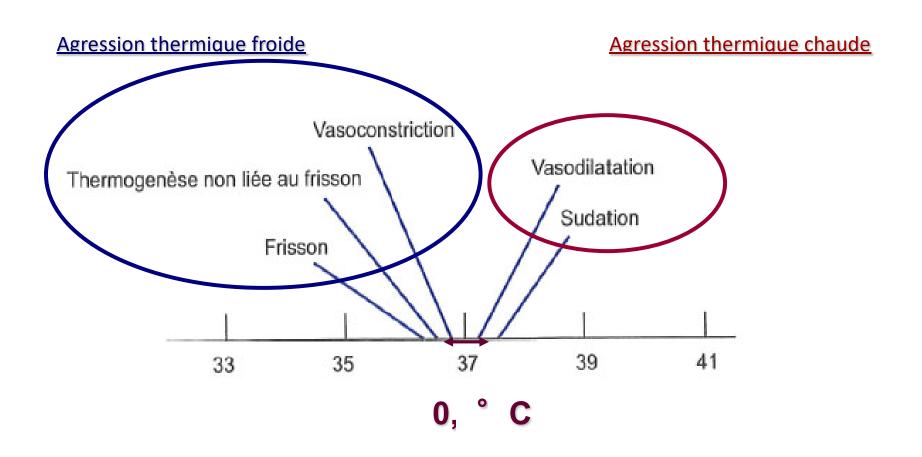

Evaporation:

- Sudation +++
- Pertes insensibles (respiration) 600 mL/24h = 390 Kcal/24h

Pertes de Chaleur

- 90% se font au travers de la peau
 - Par rayonement (50%)
 - Par évaporation (22%)
 - Par convection (15%)
 - Par conduction (3%)
- 10% par évaporation lors de la respiration

THERMORÉGULATION CHEZ ADULTE


CENTRES THERMOREGULATEURS

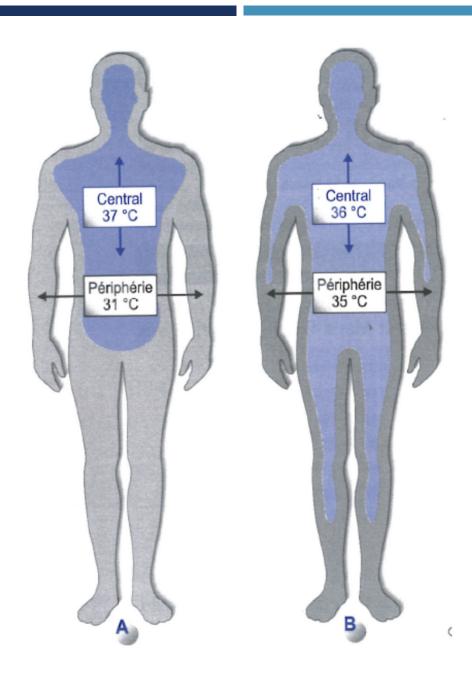
- Région pré-optique-hypothalamus antérieur
- Intégration sous forme <u>température corporelle moyenne</u>
- Comparaison à zone de neutralité thermique étroite
- Seuil de réponse au chaud séparée par le seuil de réponse au froid de 0,2 ° C

Seesler D. N Engl J Med 1997;336:1730-7

- Voies efférentes:
 - Réponses comportementales (sautiller, courir, se couvrir...) seules à exister chez le poïkilotherme
 - Réponses du système nerveux autonome
 - Mis en jeu si réactions comportementales inadaptées
 - Seuil de déclenchement +++

RÉPONSES DU SYSTÈME NERVEUX AUTONOME

A L'AGRESSION THERMIQUE CHAUDE


Vasodilatation

- Accroit le flux sanguin dans les capillaires cutanés (jusque 7,5 l/min)
- Transfert de chaleur du comportement central vers le compartiment périphérique
- Elimination par sudation (synchronisation avec 2^{ème} mécanisme)

Sudation

- Changement de l'état de l'eau consommateur d'énergie (4,5 kJ/ml de sueur)
- Perte d'autant importante que air au contact de la peau sera sec et renouvelé
- Mécanisme limité par le débit maximal de sueur

Deux phénomènes couplés et donc synchrones +++

Phénomène de redistribution par vasodilatation (compartiment central vers périphérique)

A L'AGRESSION THERMIQUE FROIDE

Vasoconstriction

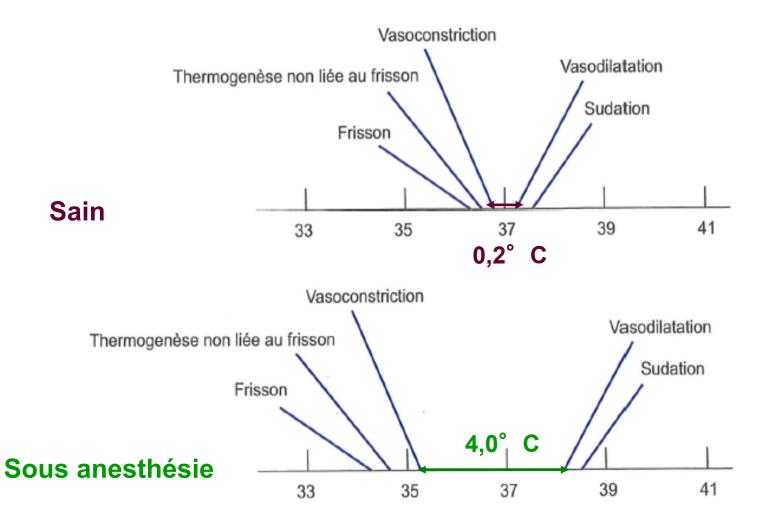
- Extrémités (doigts, orteils,...)
- Réduction surface d'échange de chaleur entre peau et environnement mais aussi entre la compartiment central et périphérique

Frisson

- Seuil de déclenchement < 1° C</p>
- Activité musculaire oscillatoire involontaire
- Augmentation production chaleur (jusqu'à X6)
- Consommation en oxygène (chute de la SvO₂)
- Libération hormones de stress et catécholamines (morbidité cardiovasculaire potentielle)

Deux phénomènes découplés et asynchrones +++

Thermogénèse non liée au frisson

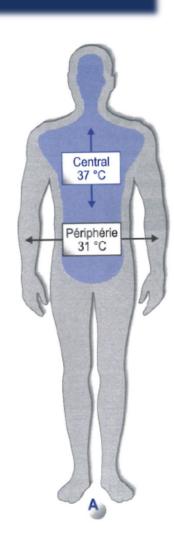

- Efficace surtout chez l'enfant
- Production métabolique de chaleur
- Muscles squelettiques et graisse brune
- Augmentation de la VO₂ sans production de travail mécanique
- Stimulée par libération adrénergique

Modulaton réponses système nerveux autonome (1)

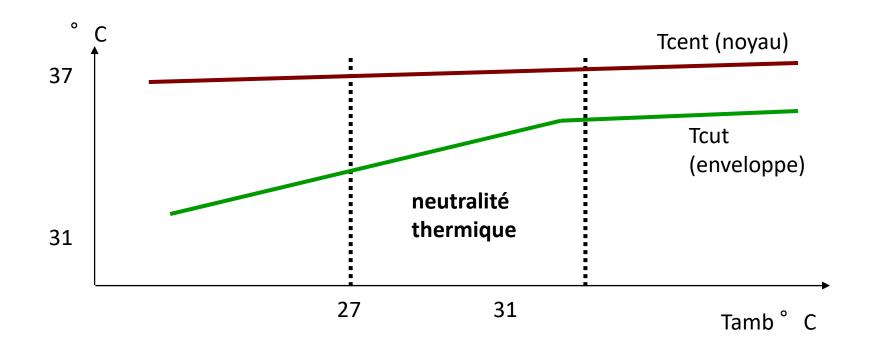
- Variation seuil de déclenchement
 - Elargissement de la zone neutralité thermique
 - Diminution seuil de réponse à l'agression thermique froide
 - Augmentation seuil de réponse à l'agression thermique chaude
- Moindre adaptation aux conditions thermiques environnementales
- Tendance à l'hypothermie

MODULATON RÉPONSES SYSTÈME NERVEUX AUTONOME

- Age
- Substances : catécholamines, sérotonine, acétylcholine, peptides,
- Hormones sexuelles (décalage thermique du cycle menstruel)
- Paramètres physiques: pression artérielle, douleur
- Niveau d'éveil (cycle circadien, baisse température durant le sommeil)
- Alcool (sensible au froid de l'environnement)
- Hyperglycémie
- Médicaments (agents anesthésiques +++)



THERMORÉGULATION ET ANESTHÉSIE


- Inhibition de la thermogénèse sans frisson
- Vasodilatation périphérique
- Réduction de la production de chaleur de 20%
- Hypothermie centrale importante: redistribution de la chaleur dans l'organisme du noyau vers la périphérie

MODÈLE CORPOREL À DEUX COMPARTIMENTS CALORIQUES

- Compartiment central (axe cerveau, médiastin, organes digestifs)
 - Température régulée autour de 37° C
 - Valeur optimale fonctionnement systèmes enzymatiques et mécanismes cellulaires
- Compartiment périphérique (muscles=45% de masse corporelle)
 - Température est peu régulée
 - < 2 à 4° C du compartiment central</p>
 - Température dépend de la température centrale et environnementale
 - Zone d'échanges par conduction entre les deux compartiments
 - Zone tampon
 - Stockage et perte de chaleur
 - Préserve la mise en jeu du système thermorégulateur lors de modification du contenu de chaleur

SYSTÈME MIXTE (HOMÉOTHERME ET POÏKILOTHERME)

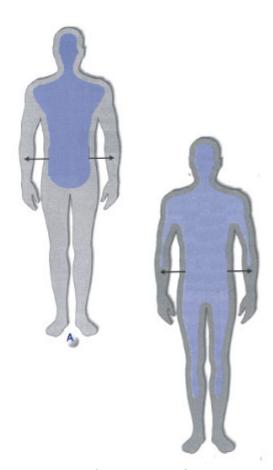
- Homéothermie ne concerne que le compartiment central (80 % de la masse corporelle)
- « Ecorce » ou compartiment périphérique est poïkilotherme

« AFTERDROP » EN CHIRURGIE CARDIAQUE

Modification température centrale par CEC

Ecorce de cinétique plus lente et donc plus froide (température environnement +++)

Gradient de température noyau/écorce


A l'arrêt du réchauffement, redistribution par conduction du noyau vei l'écorce

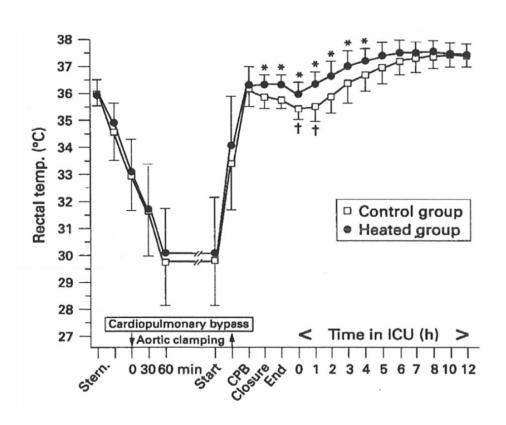
Chute de la température centrale en réanimation

AFTERDROP

Moyens de lutte contre l'afterdrop

- 1. Réchauffement péricorporel par air pulsé de l'écorce pour diminuer le gradient noyau
- 2. Vasodilatateurs permettant d'augmenter la part du noyau
- 3. Réchauffement progressif et lent

Prévention afterdrop

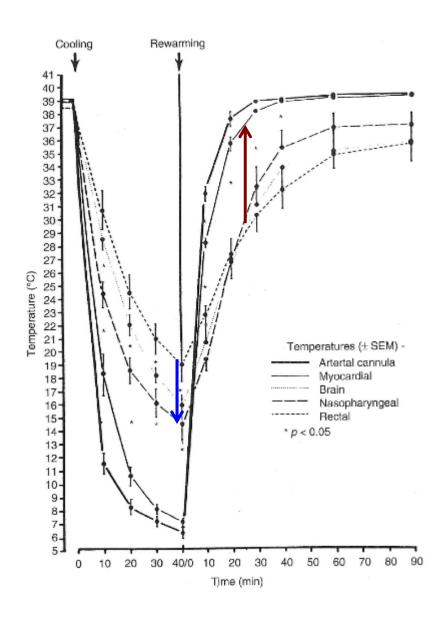

British Journal of Anaesthesia 1998; 80: 318-323

Benefits of intraoperative skin surface warming in cardiac surgical patients

L. Hohn, A. Schweizer, A. Kalangos, D. R. Morel, M. Bednarkiewicz and M. Licker

0	V		
1	1		

*	Heated group (n=43)	Control group (n=43)			
Patient characteristics					
Age (yr)	60 (42-76)	66 (50-85)			
Sex (M/F)	34/9	35/8			
Body surface (m ²)	1.9(1.6-2.1)	1.9(1.6-2.2)			
Left ventricular ejection fraction					
(%)	61 (31–88)	63 (33-84)			
Preoperative antiaggregant and anticoagulant treatment					
Salicylates (n)	23	18			
Heparin (n)	5	1			
Dicoumarol (n)	1	1			
Surgical procedures					
CABG (n)	30	29			
Valvular surgery (n)	9	8			
Combined (n)	4	6			
Aortic clamping (min)	99 (18-181)	101 (29-250)			
CPB duration (min)	138 (49-217)	142 (48-297)			
Anaesthesia, analgesia and sedation					
Fentanyl (µg kg ⁻¹)	58 (39-92)	61 (31–96)			
Midazolam (mg kg ⁻¹)	0.7(0.4-1.1)	0.8(0.5-1.2)			
Morphine (mg kg ⁻¹)	0.12	0.10			
	(0.04-0.19)	(0.03-0.17)			

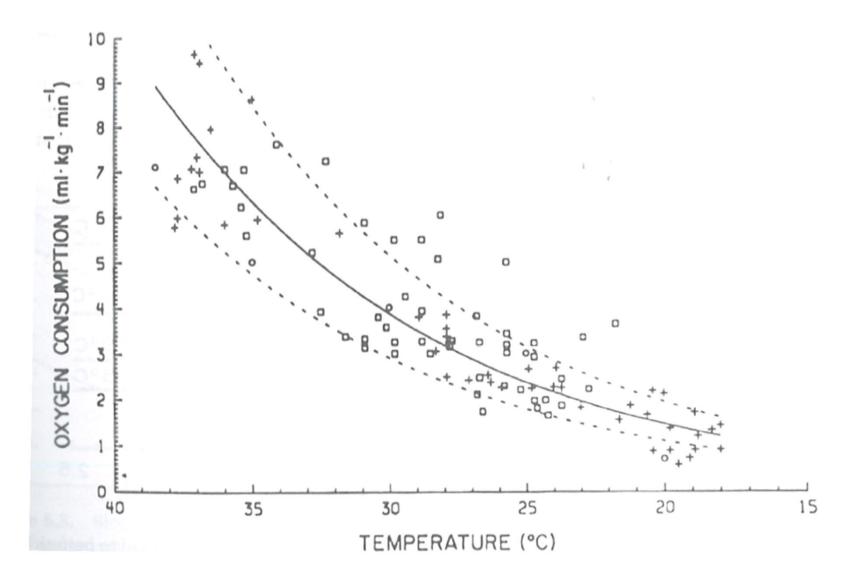


MESURE DE LA TEMPÉRATURE

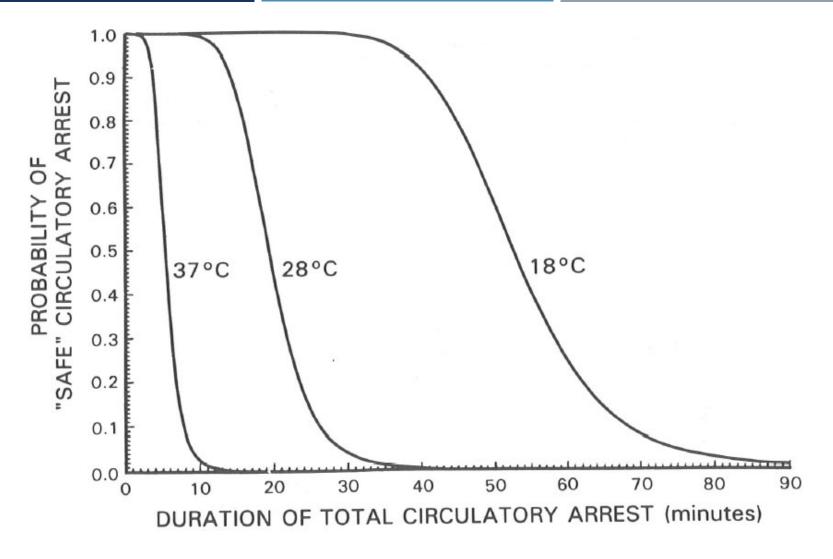
- Température périphérique
 - Cutanée
- Température centrale
 - Naso-pharyngée
 - Œsophagienne (attention ré-injection artérielle)
 - Tympanique
 - Vésicale
 - Rectale

Cinétiques différentes ++++

Cinétiques différentes...

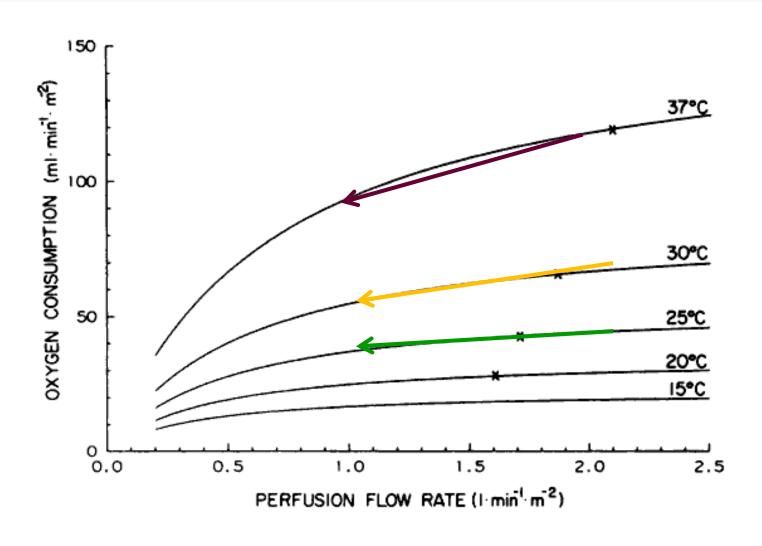


LES HYPOTHERMIES...


- Hypothermie légère <u>34-36°</u> C
- Hypothermie modérée <u>32-34°</u> C
- Hypothermie profonde < 30° C
 - Arrêt circulatoire + cérébro-plégie 24-26° (Kazui et al. Ann Thorac Surg 1994)
 - Arrêt circulatoire 18-20° C (*Crepps et al. Ann Thorac Surg 1987*)

POURQUOI HYPOTHERMIE AU COURS DE LA CEC?

- Réduction métabolisme cellulaire et donc VO₂
 - Réduction vitesse processus biochimiques et réactions enzymatiques
- Meilleure protection d'organes (cœur, cerveau, rein)
 - Préservation des stocks ATP (stock énergétique cellulaire)
 - Moindre libération de neuro-transmetteurs excitateurs (glutamate)
 - Moindre perméabilité cellulaire
- Réduction du débit de perfusion d'assistance
 - Moindre traumatisme cellulaire
 - Moindre risque embolique
 - Champ opératoire parfaitement exsangue (retour bronchique, coronaire...)


From Kirklin JW. Hypothermia, circulatory arrest and cardiopulmonary bypass. In Kirklin JW, Barratt-Boyes BG, eds. Cardiac surgery. New York: Churchill Livingstone, 1993:61-127

Nomogram of an estimate (not rigously derived) of the probability of « safe » total circulatory arrest (absence of structural or functional damage) according to the arrest time, at nasopharyngeal temperatures of 37° C, 28° C and 18° C.

From Kirklin JW. Hypothermia, circulatory arrest and cardiopulmonary bypass. In Kirklin JW, Barratt-Boyes BG, eds. Cardiac surgery. New York: Churchill Livingstone, 1993:61-127

RÉDUCTION DU DÉBIT DE PERFUSION

■2,4 L.min⁻¹.m⁻² si T° entre 35 et 37° C

■1,8 L.min⁻¹.m⁻² si T° entre 28 et 33° C

HYPOTHERMIE ET SYSTÈME NERVEUX

- Hypothermie diminue le métabolisme cérébral et DSC
- Diminution de la libération des neurotransmetteurs (rôle neuroprotecteur)
- Perte de conscience à partir de 28° C
- Perte de la constriction pupillaire à 25° C
- Vitesse de conduction nerveuse diminue
- Tonus musculaire augmente

HYPOTHERMIE ET EEG

- EEG isoélectrique pour une T° C < 25° C (BIS < 20+++)
- 21-24° C: pertes des composantes corticales précoces PES
- 13-18° C: perte des composantes sous corticales

HYPOTHERMIE ET SYSTÈME CARDIOVASCULAIRE

- Hypothermie légère (jusque 34° C)
 - Mise en jeu des mécanismes thermorégulateurs (tachycardie, vasoconstriction, augmentation du débit cardiaque, HTA modérée)
- Hypothermie modérée (30-34° C)
 - Mécanismes thermorégulateurs sont dépassés
 - Bradycardie (répondant mal à l'atropine)
 - Effet inotrope négatif
 - Diminution débit cardiaque et pression artérielle
 - Augmentation des RVS (activité sympathique, catécholamines, viscosité sanguine)
 - Vasodilatation splanchnique
 - Diminution du seuil arythmogène

HYPOTHERMIE ET SYSTÈME CARDIOVASCULAIRE

A partir de 28° C:

- Trouble de conduction sino-atriale et auriculo-ventriculaire (anomalies des courants sodiques, potassiques et calciques)
- Irritabilité ventriculaire
- Fibrillation ventriculaire

SYSTÈME RESPIRATOIRE

 Diminution ventilation minute proportionnelle à diminution de la VO₂

Diminution réponse au CO₂ et à l'hypoxémie

Diminution réflexe de toux et de la clairance mucociliaire

EQUILIBRE ACIDO-BASIQUE ET OXYGÉNATION

- Augmentation du coefficient de solubilité du CO₂
- Baisse de la production de CO₂ (diminution du métabolisme cellulaire)
- Baisse de la PaCO₂ et augmentation pH (alcalose)
- Déplacement de la courbe dissociation Hb vers la gauche (augmentation affinité de l'O₂ pour l' Hb)

36° C

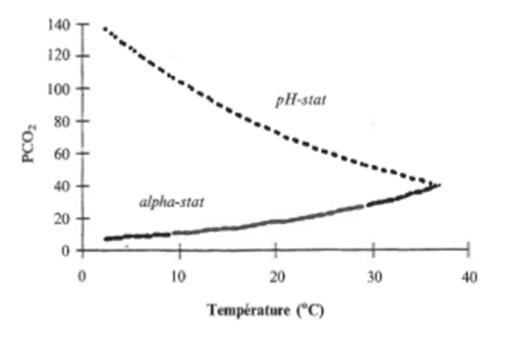
	GEM® Premier 4 Ho HC 13058			
Crit. Bas		rence	Crit	
002	nez	Haut	Haut	
7 20	7.85	7 45	7 801	
			90000	
			-	
	NAMA	0.000		
7.30	7.25	7.48	7.601	
			8.91	
			- 1	
			100000	
			7.01	
			** 1	
			1.60]	
2	39	48	-01	
2.6	4.1	5.8	20.0)	
-			6.01	
	13.4	16.7	41	
			++ 1	
-	94.0	98.0	- 1	
	-2.0	20	+1	
2				
	7.20 2.5 4.9 7.20 2.5 4.9 120 2.8 	7.20 7.35 2.5 5.1 4.9 11.1 7.20 7.35 2.5 5.1 4.9 11.1 120 135 2.8 3.5 95 0.80 1.20 - 38 2.6 4.1 - 0.5 - 13.4 - 95.0 - 94.0 - 94.0	7.20 7.35 7.45 2.5 5.1 5.6 4.9 11.1 14.4 7.20 7.35 7.45 2.5 5.1 5.6 4.9 11.1 14.4 120 135 145 2.8 3.5 4.9 - 9.5 107 0.80 1.20 1.30 - 3.9 48 2.6 4.1 5.8 - 0.5 1.5 - 13.4 15.7 - 95.0 98.0 - 94.0 98.0 - 2.0 2.0	

28° C

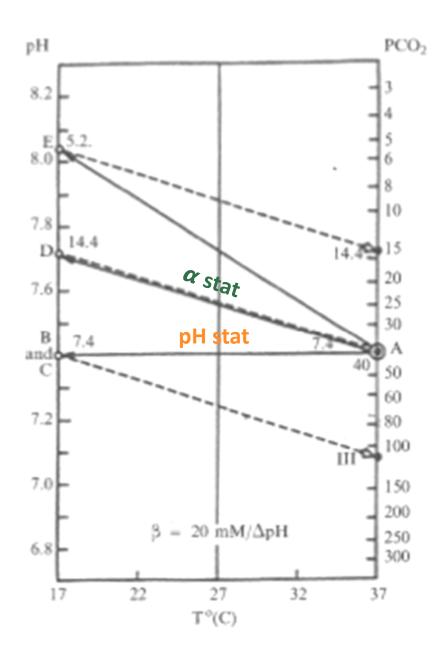
Date Exp Analyse Modèle : Service : Nom : N°S :			· ·				
Résulta	ts		Crit		ence	CB1 Heat	
	20 0701		Bass	5365	Haut	Theat	
Corrigé (7.42		7.20	7.35	7.45	7.60)	
pH(T) pCO ₂ (T)		kPa	12.5		5.6		
pG ₂ (T)	14.8	kPa	[48	111	14.4]	
Masuré (- CON	THE PERSON NAMED IN				
pH pH	17.29		17.20	7.35	7.45	7.60)	
pCO,	↑ 5.5	kPa	2.002/00/00/00 H		58		
ρO,	A 20.8	kPa	3.530000000	11.1			
Na.	137	mmol/L	1120			155]	
K-	↑ 5.1	mmol/L	[2.8		4.9	777000	
C:	↑ 108	mms//L	1-	95	107]	
Ca	↓ 0.86	mmorL	[0.80]	1.20	1.30	160]	
Het	↓ 24	%	1		48	- 1	
Glu	↑ B.0	mmobil				20 0]	
Lac	^ 3.0	mmol-L	1	0.5	1.5	6.0]	
CO-Oxy	métrie						
IHE	↓ 10.0	g/dL	2	13.4	167	#1	
O, Hb	97.0	15	2	95.0	98 0		
80,	↑ 98.9	13	1 -	94.0	98.0	453	
Calculé							
BEecf	L -3.0	mmol/L	1-	-20	2.0		
D,ci	↓ 13.8	mlrdL	23,022	15.0			
HC0,76	23.6	mmovL				40.01	
1	1 344	alours de				03000	
	nforma		-		-		
Donnée	s Opérate	94	CT (4 4	7		
Temp		28 0				10	
BP		101.	3			KPE	
O2 at Ve	ant.					111101	
FIG.		30.0	V.				

24° C

				181	1238
		Crit.	300000		Crit.
		Bas	Has	Haut	Haut
		1		-	122
kPa			200	4	24400
kPa			(-)	-	
	19		The same		
kPa	1				
(200)			28		
272.673	N.	1/33	35		- 1
-	1	100		140]
1600 CO (170 CO)		-			1
MANUAL TO A	7				1
MANAGE TO SERVICE	ř				- 1
CONTRACTOR OF THE PARTY OF THE	100				1000
mmal/L	Î]
	*				
old	-				200
40000000			-	**]
	- 83		7	型	-1
	2	-		-	-1
			-	7	1
nmot/L	100				-1
	kPa kPa kPa mmol/L mmol/L mmol/L mmol/L g/dL % nmol/L	kPa kPa kPa kPa mmol/L mmol/L mmol/L mmol/L g/dL % %	Ras KPa [KPa [KPa [KPa [MPa [MMol/L [Mm	#Pa [##############################	Crk. Référence Bas Bas Haut


RÉGULATION ALPHA-STAT OU PH-STAT AU COURS DE L'HYPOTHERMIE

Théorie régulation alpha-stat


- Mécanismes régulateurs de neutralité électro-chimique au cours de l'hypothermie ont pour objectif de maintenir constant le degré de dissociation α (rapport formes dissociées/non dissociées) du radical <u>imidazole de l'histidine</u> intra-cellulaire
- Rôle majeur dans la conservation des propriétés enzymatiques tissulaires
- Etat acido-basique défini par des valeurs de PCO_2 et de pH variables selon la température

Théorie de régulation pH-stat

- pH qui représente la variable régulée
- Augmentation du CO₂ total (hypoventilation alvéolaire ou apport exogène)

 α stat Lecture des GDS à 37° C (ajustement pour avoir des GDS normaux à 37° C)

pH stat Lecture GDS corrigée à la température (apport de CO₂ via oxygénateur pour avoir une PaCO₂ normale)

urhum, NC y reprint requests to Frank H. Kern, MD, Box 3046, Departnesthesiology, Duke University Medical Center, Durham, NC

iht © 1995 by W B Saunders Company 770/95/0902-0019\$3 00/0 rds alpha-stat, pH-stat, cardiopulmonary bypass, neuropsynicome

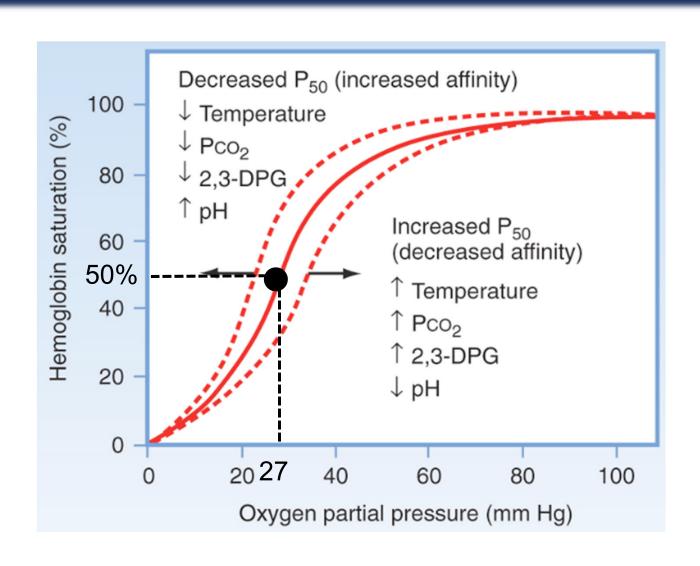
cell itself.⁸⁻¹⁰ A second advantage of alpha-stat regulation is the maintenance of a more normal cerebral flow/metabolism relationship, thereby limiting luxuriant cerebral blood flow during CPB.

......

The excessive cerebral blood flow (CBF) associated with pH-stat regulation may increase embolic material (air or particulate) to the brain. The concern of air embolism is magnified in children for two reasons: (1) the presence of

been unable to confirm a lowering of intracellular pH associated with pH-stat strategy, suggesting that intracellular acidosis is not significantly different between pH-stat and alpha-stat strategies. ^{20,21} Therefore, the disadvantages of pH-stat may be no more than theoretical. Finally, a recent work by Jonas et al retrospectively evaluates pH- and alpha-stat management strategies during core cooling in a small series of infants with transposition of the great arteries and infact ventricular sentum undergoing the

temperature unops, mey hypoventuate, CO_2 stores increase, and intracellular pH becomes acidotic in most tissues. The acidotic state causes a further depression of metabolism, which is useful in nonfunctioning tissues.

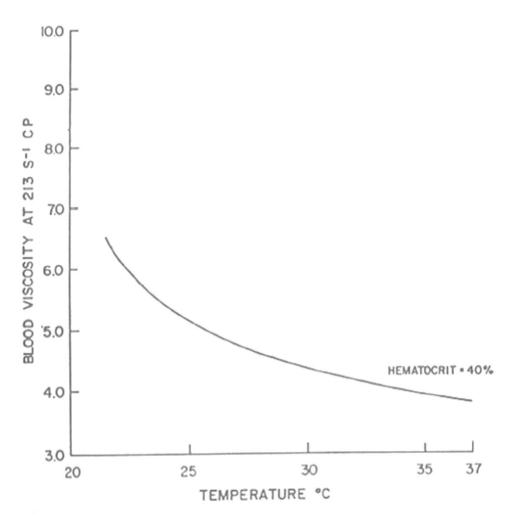

Ave, Boston, MA 02115.

Copyright © 1995 by W B. Saunders Company
1053-0770/95/0902-0020\$3.00/0

Key words. pediatric, hypothermia, acid-base management

Recommendations	Class ^a	Level ^b	Ref ^c
Alpha-stat acid-base manage- ment should be applied in adult cardiac surgery with moderate to mild hypothermia because neu- rological and neurocognitive out- comes are improved.	lla	В	[179–181]
Maintenance of a normal pH (7.35-7.45) and avoidance of hyperchloraemic acidosis should be considered in order to reduce the risk of postoperative complications.	lla	В	[177]
Magnesium sulphate may be considered perioperatively for prophylaxis of postoperative arrhythmias.	IIb	В	[183-185]

EVOLUTION DE LA COURBE DE DISSOCIATION DE L' HB EN FONCTION DE LA T° C


■ Hypothermie augmente l'affinité de l'Hb pour O₂ de 5,7%/° C

Moindre diffusion oxygène au tissus

■ Mais diminution des besoins en O₂ de 7 à 8%/° C

MODIFICATIONS HYDRO-ÉLECTROLYTIQUES

- Séquestration liquidienne
 - Rétention aiguë d'urine
 - Iléus paralytique et stase des sécrétions digestives
- Augmentation viscosité sanguine
- Hyperglycémie par insulinopénie relative

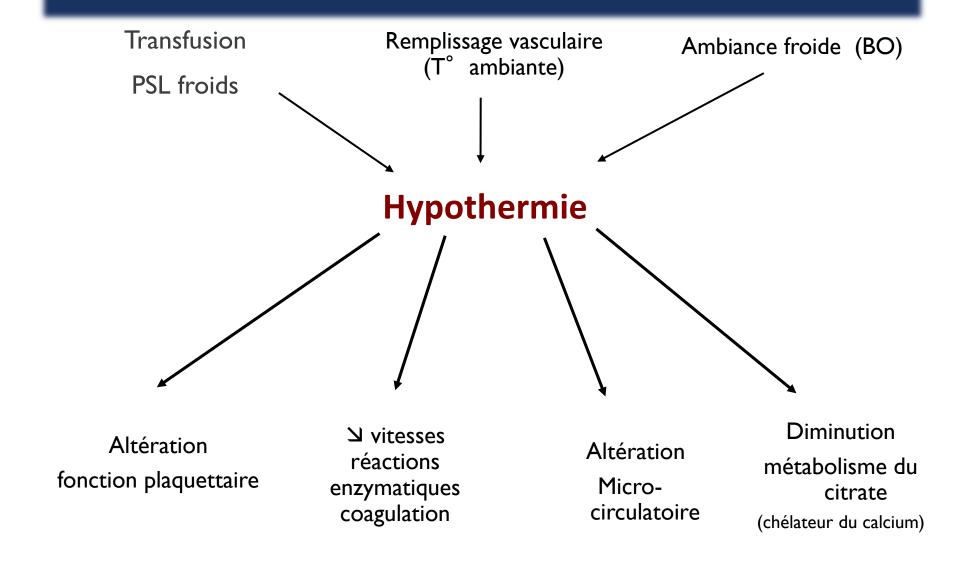
From Rand PW, Lacombe E, Hunt HE, Austin WH. Viscosity of normal human blood under normothermic and hypothermic conditions. J Appl Physiol 1964;19,117-122, as modified by Gordon RJ, Ravin MB, Daicroff GR. Blood rheology. In Cardiovascular physiology for anaesthesiologists.

Sprinfield, Illinois: Charles C Thomas, 1979:27-71

Nécessité d'une hémodilution ++++

SYSTÈME DE LA COAGULATION

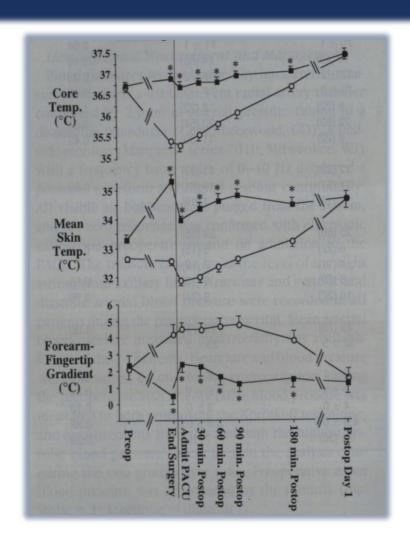
Troubles de la coagulation

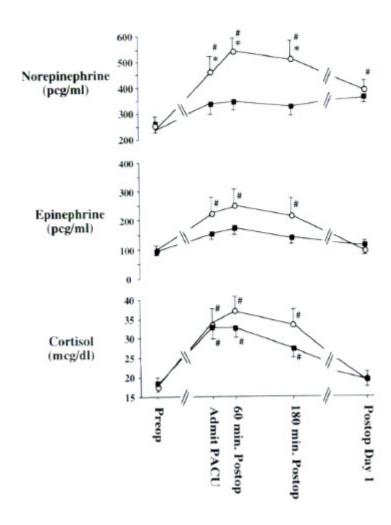

- par inhibition de la cascade de la coagulation (allongement du TP)

Dysfonction plaquettaire

- Activation plaquettaire par le thromboxane A2 est T° C dépendante
- Thrombopénie par sidération médullaire et séquestration hépatosplénique

Risque néanmoins d'accident thromboembolique


HYPOTHERMIE ET COMPÉTENCE HÉMOSTATIQUE



SYSTÈME IMMUNITAIRE

- Diminution chimiotactisme des polynucléaires
- Diminution phagocytose des bactéries

THE CATECHOLAMINES, CORTISOL AND HEMODYNAMIC RESPONSE TO MILD PERIOPERATIVE HYPOTHERMIA

MODIFICATIONS PHARMACOLOGIQUES DE L'HYPOTHERMIE

- Complexe car modifications multiples
- Diminution du volume de distribution des médicaments par réduction de la circulation musculaire et cutanée: augmentation de leur concentration sanguine
- Diminution filtration glomérulaire
- Diminution filtration hépatique: prodrogues non métabolisées

Hypothermia to reduce neurological damage following coronary artery bypass surgery (Review)

Rees K, Beranek-Stanley M, Burke M, Ebrahim S

THE COCHRANE COLLABORATION®

Analysis 4.1. Comparison 4 Hypothermia versus normothermia, antegrade delivery of cardioplegia,

Outcome 1 Non fatal stroke.

Review. Hypothermia to reduce neurological damage following coronary artery bypass surgery

Comparison: 4 Hypothermia versus normothermia, antegrade delivery of cardioplegia

Outcome: I Non fatal stroke

Study or subgroup	Treatment	Control	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N n/N Peto,Fixed,95% CI			Peto,Fixed,95% CI	
Birdi cold	0/100	1/100	++	3.1 %	0.14 [0.00, 6.82]
Pelletier	2/100	1/100	-	9.1 %	1.96 [0.20, 19.07]
Plourde	0/29	1/33		3.1 %	0.15 [0.00, 7.76]
Warm Heart	13/872	14/860	-	81.7 %	0.91 [0.43, 1.96]
Yau A cold int A	1/22	0/21		3.1 %	7.06 [0.14, 356.21]
Total (95% CI)	1123	1114	-	100.0 %	0.93 [0.47, 1.85]
Total events: 16 (Treatmer	nt), 17 (Control)				
Heterogeneity: Chi ² = 3.1		=0.0%			
Test for overall effect: Z =					
reservor over all effects 2	0.20 (1 - 0.01)				
			0.1 0.2 0.5 1 2 5 10		

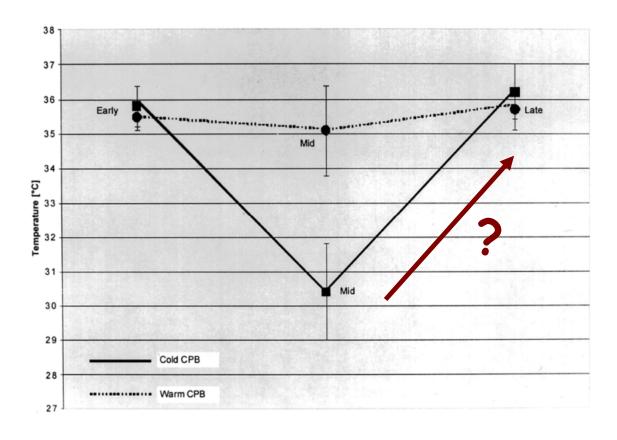
Favours treatment Favours control

Analysis 4.2. Comparison 4 Hypothermia versus normothermia, antegrade delivery of cardioplegia, Outcome 2 Perioperative deaths (not strokes).

Review. Hypothermia to reduce neurological damage following coronary artery bypass surgery

Comparison: 4 Hypothermia versus normothermia, antegrade delivery of cardioplegia

Outcome: 2 Perioperative deaths (not strokes)


Study or subgroup	Treatment	Control	Peto Odds Ratio	Peto Odds Ratio	
	n/N	n/N	Peto,Fixed,95% CI	Peto,Fixed,95% CI	
Birdi cold	2/100	1/100		1.96 [0.20, 19.07]	
Pelletier	1/100	1/100	 	1.00 [0.06, 16.10]	
Plourde	0/29	0/33		0.0 [0.0, 0.0]	
Warm Heart	22/872	12/860	-	1.80 [0.91, 3.54]	
Yau A cold int A	1/22	0/21		7.06 [0.14, 356.21]	
Total (95% CI)	1123	1114	-	1.82 [0.97, 3.40]	
Total events; 26 (Treatment),	I 4 (Control)				
Heterogeneity: $Chi^2 = 0.64$, o	tf = 3 (P = 0.89); I ² =0.0%				
Test for overall effect: $Z = 1.8$	37 (P = 0.061)				
			01 02 05 1 2 5 10		

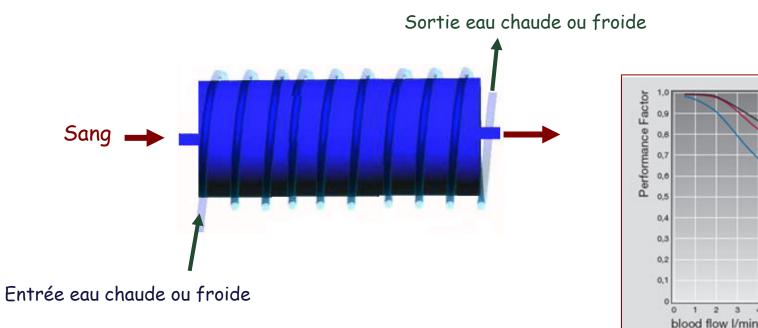
0.1 0.2 0.5 1 2 5 10
Favours treatment Favours control

Prospective Randomized Trial of Normothermic versus Hypothermic Cardiopulmonary Bypass on Cognitive Function after Coronary Artery Bypass Graft Surgery

Alina M. Grigore, M.D.,* Joseph Mathew, M.D.,† Hilary P. Grocott, M.D., F.R.C.P.C.,‡ Joseph G. Reves, M.D.,§ James A. Blumenthal, Ph.D.,|| William D. White, M.P.H.,# Peter K. Smith, M.D.,** Robert H. Jones, M.D.,** Jerry L. Kirchner, B.S.,†† Daniel B. Mark, M.D.,‡‡ Mark F. Newman, M.D.,§ Neurological Outcome Research Group,§§ CARE Investigators of the Duke Heart Center

Anesthesiology 2001; 95:1110-9

RÈGLES DE BONNE PRATIQUES DU REFROIDISSEMENT ET DU RÉCHAUFFEMENT


- Deux sites de mesures si hypothermie profonde (<28° C)</p>
- Gradient entre température sang veineux et eau échangeur thermique < 10° C
- Gradient de température veineuse et artériel < 2-3 ° C
- Gradient de température rectale et naso-pharyngée < 10° C
- Pas de ré-injection artérielle > 37,5° C
- Refroidissement 1° C/3min (risque de lésions cérébrales si > 1° C/2min)
- Réchauffement ne doit pas être supérieur à 1° C/5 min (risque hyperthermie cérébrale, solubilité des gaz diminue avec l'augmentation de la température)

PRINCIPE DE L'ÉCHANGEUR THERMIQUE

Transfert énergie thermique d'un fluide à un autre (conduction)

A travers une membrane d'échange (aucun mélange +++)

Acier inoxydable ou fibre creuse en polyéthylène ou de polyuréthrane

water flow

■ 15 l/min ■ 10 l/min ■ 5 l/min

GÉNÉRATEUR THERMIQUE (« BLOC CHAUD-FROID »)

- Réchauffer ou refroidir le sang du circuit de CEC
- Echangeur thermique
- Plusieurs compartiments indépendants
- Refroidissement : eau froide ou bloc de glace (alimentation électrique constante+++)
- Procédure de maintenance (+++)

