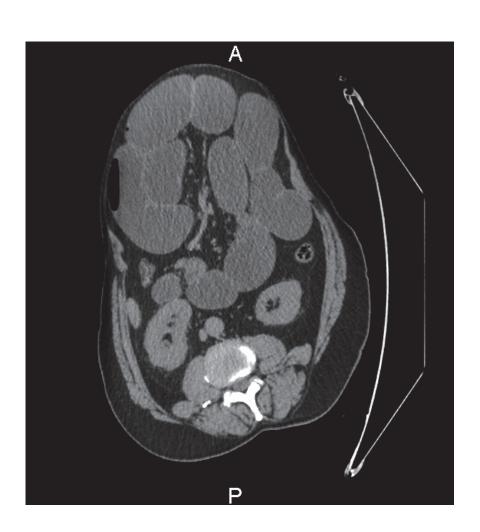




Kinésithérapie et réanimation digestive

Antoine Dewitte


Service d'Anesthésie-Réanimation Magellan , CHU de Bordeaux ImmunoConcEpT, INSERM ERL 1303, CNRS UMR 5164, Université Bordeaux

• Problématique

- Patient suivi pour une éventration complexe opérée à plusieurs reprises
- ATCD de SAS appareillé + BPCO
- Syndrome occlusif grêlique évoluant depuis 1 semaine traité médicalement sur obstacle situé au sein du sac d'éventration (probable bride)
- Chirurgie en urgence: résection grêlique avec anastomose en 1 temps. Pas de péritonite constatée. Réfection de paroi avec fermeture sur plaque.

Post-op immédiat:

- Extubation précoce, patient dyspnéique
- Mise en place d'une VNI prophylactique séquentielle + continue nocturne (ATCD de SAS appareillé + BPCO)
- Réintubation en urgence la nuit suivante dans un tableau de détresse respiratoire aiguë

Insuffisance respiratoire aiguë postopératoire

Chirurgie abdominale:

- 6 à 80% d'IRA postopératoire
- mortalité de 6 à 29%

Ferreyra, Ann Surg 2008; Kroenke, Chest 1993

Chirurgie hépatique majeure

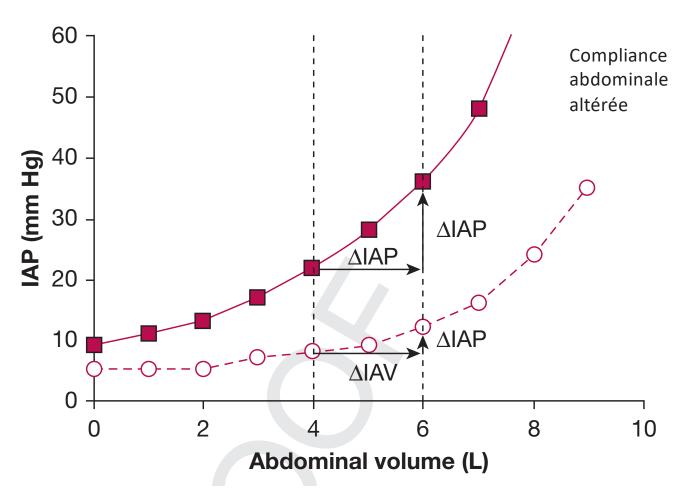
- 25% des cas
- mortalité 29%

Jaber, Chest 2005

Chirurgie colorectale:

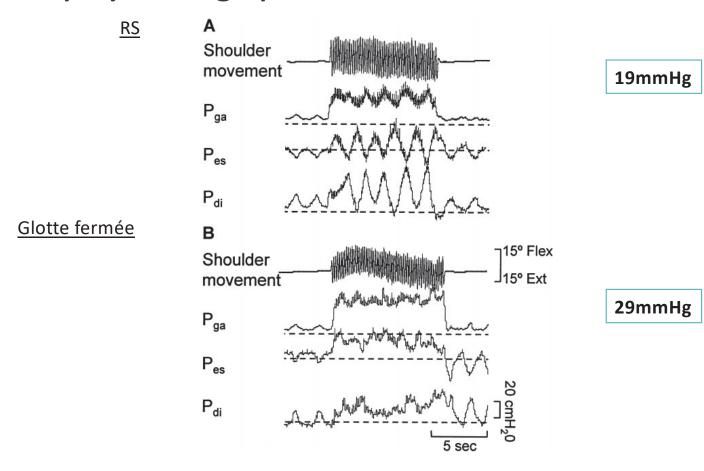
• 5 à 14% des cas

Janny, AFAR 2007


Chirurgie thoracique:

- 40% atélectasies majeures
- 30 à 50% d'IRA nécessitant une ventilation mécanique

Freynet, Interact Cardiovasc Thorac Surg 2007


- Problématique
- Physiopathologie

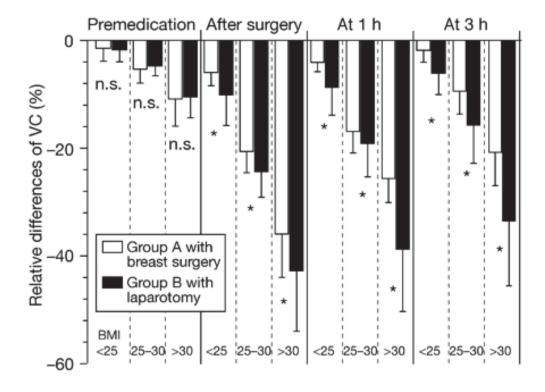
- Problématique?
- Physiopathologie
 - Hyperpression intra-abdominale

Malbrain ML et al; Anaesthesiol Intensive Ther. 2014;46(5):406-432

Variations physiologiques de la PIA

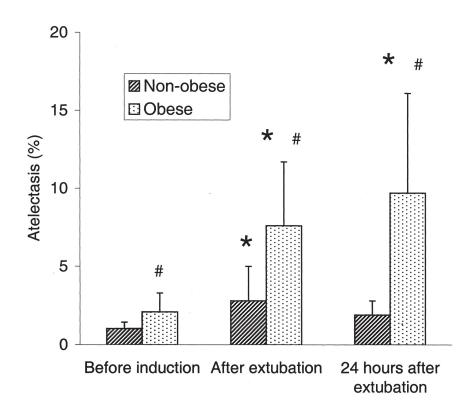
J Appl Physiol (1985). 2000 Sep;89(3):967-76

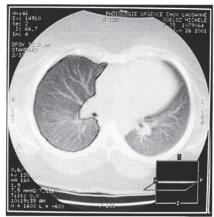
• PIA normale = 0-5 mmHg chez l'adulte sain


Söderberg, Scand J Urol Nephrol 1970; 4:155-6 Sanchez, Am Surg 2001; 67:243-8 De Keulenaer, Intensive Care Med 2009

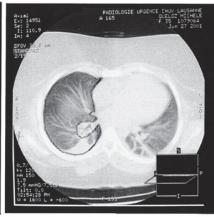
- Variations normales de la PIA:
 - respiration (↑ PIA à l'inspiration)
 - vomissement, défécation...
 - exercice physique
- HIA « physiologique » : grossesse, obésité morbide
- **Pneumopéritoine chirurgical** = modèle HIA transitoire

Obésité


Chirurgie du sein vs laparotomie

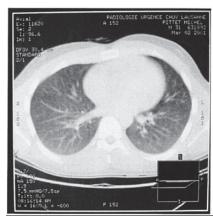

Impact de l'obésité sur la fonction respiratoire

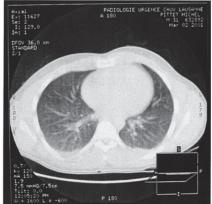
Obésité

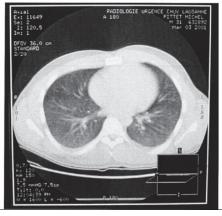


Impact de l'obésité sur la fonction respiratoire

Obésité

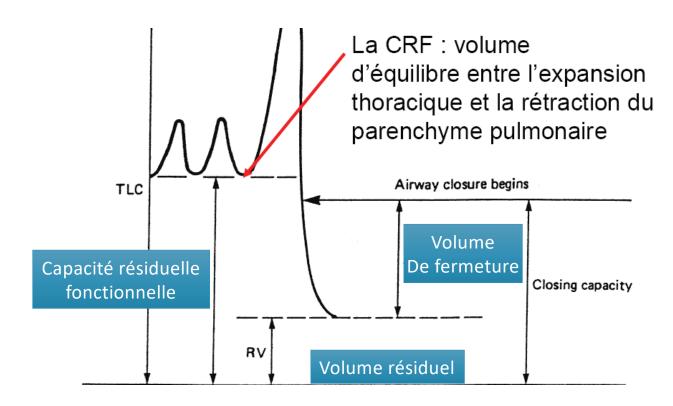


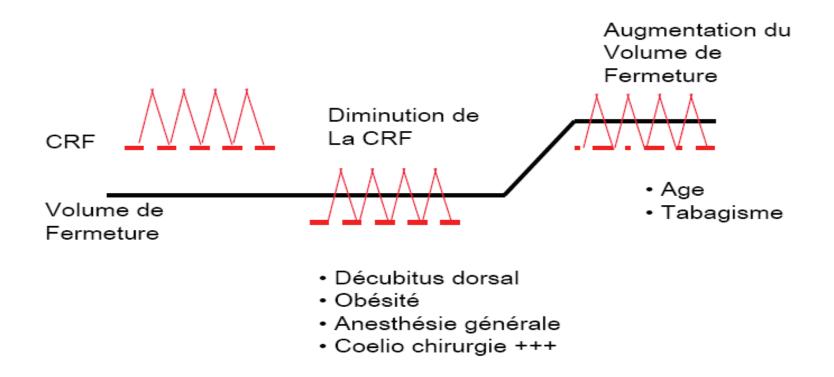

Obese


Before induction

After extubation

24 hours later




Nonobese

Relation CRF-volume de fermeture

Si CRF<volume de fermeture => un maximum d'alvéoles seront fermées
Apparition d'atélectasies

Relation CRF-volume de fermeture

Study/Year	Population	Findings
Trauma		
Ivatury et al ³⁴ /1998	70 patients with "severe abdominal trauma"	32% incidence of ACS
Balogh et al ³⁵ /2003	188 consecutive patients with major torso trauma requiring shock resuscitation	14% incidence of ACS
Balogh et al ⁴⁵ /2011	81 consecutive shock/trauma patients admitted to an ICU	0% incidence of ACS; 75% incidence of IAP > 12 mm Hg
Burn		
Ivy et al ³⁶ /2000	10 severely burned patients	20% incidence of ACS requiring surgical decompression; 70% incidence of peak IAP > 25 mm Hg
Strang et al ⁵⁷ /2014	Systematic review of 50 publications, reporting 1,616 severely burned patients	4%-17% prevalence of ACS; 65%- 75% prevalence of IAP > 12 mm Hg
Ruptured abdominal aortic aneurysm		
Karkos et al ³⁷ /2014	Meta-analysis of 1,134 patients in 39 studies undergoing endovascular repair of ruptured abdominal aortic aneurysms	8%-17% incidence of ACS
Adkar et al ³⁸ /2017	1,241 patients undergoing endovascular repair of ruptured abdominal aortic aneurysms	7% incidence of need for concomitant laparotomy ^a
Pancreatitis		
Al-Bahrani ⁶⁵ /2008	18 patients with severe acute pancreatitis	56% incidence of ACS
Aitken et al ⁴⁶ /2014	218 patients admitted to a medical ICU with acute pancreatitis	1% incidence of ACS; 14% incidence of IAP > 12 mm Hg on admission
Mixed populations		
Malbrain et al ³⁹ /2004	1-d snapshot prevalence study of all 97 patients in 13 general and specialized ICUs across 6 countries	8% prevalence of ACS; 59% prevalence of IAP > 12 mm Hg

Chest. 2017 Aug 2. pii: S0012-3692(17)31319-3

Conséquences

7 PIC

Poumons:

≥ CRF

Pressions VA

Compression VCI:

№ Retour veineux

Reins:

- Congestion veineuse rénale
- 🔰 PPR
- **7** RV spanchnique
- Ischémie mésentérique
- Translocation

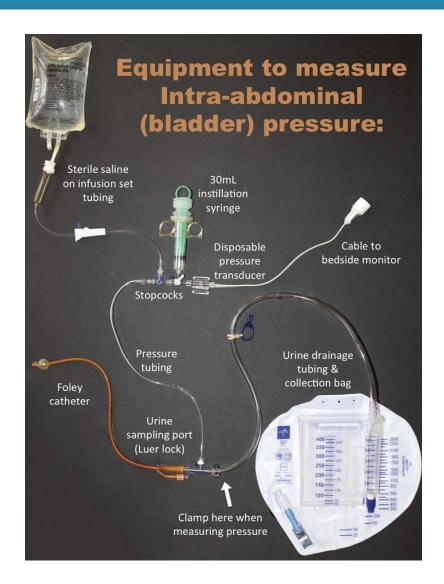
Increased jugular venous pressure impairs venous return from the brain, increasing intracranial pressure. Decreased functional residual capacity and increased ventilation / perfusion mismatch impairs oxygenation. Increased ventilator pressures are seen during mechanical ventilation. Right ventricular afterload is increased. Cardiac output may fall as venous return is impaired. Vena cava compression decreases preload. Increased femoral venous pressures and peripheral vascular resistance may reduce arterial flow to the lower extremities by as much as 65%. Renal venous congestion, direct compression of renal parenchyma, decreased renal perfusion, and activation of the renin-angiotension system lead to oliguria and kidney injury. Increased splanchnic vascular resistance leads to visceral ischemia, bacterial translocation, and lactatemia. Chest. 2017 Aug 2. pii: S0012-3692(17)31319-3

Définition

Hyperpression intra-abdominale

PIA > 12 MmHg

Syndrome compartimental abdominal


PIA > 20 mmH

+

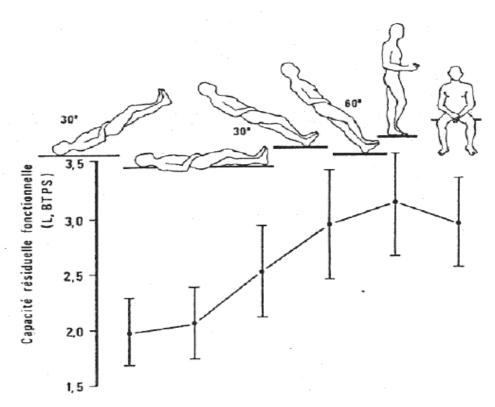
Défaillance d'organe récente (SOFA > 3)

World Society of the Abdominal Compartment Syndrome (WSACS)

Mesure de la PIA

<u>Chest.</u> 2017 Aug 2. pii: S0012-3692(17)31319-3

Mesure de la PIA

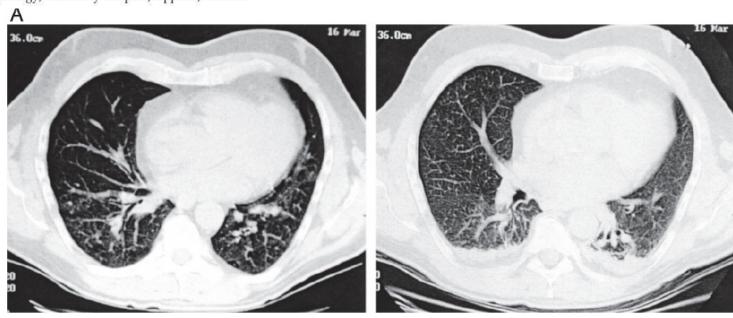

- Patients en décubitus dorsal 0°
- Rincer la tubulure au SSI avant zéro du capteur de pression
- Injection < 25ml de SSI dans la vessie (colonne d'eau) et clamper après capteur
- Attendre 30-60s (relaxation du muscle vésical)
- Mesure de la pression en fin d'expiration et absence de contraction abdominale

NB: 1mmHg = 1,36cmH20

- Problématique?
- Physiopathologie
 - Hyperpression intra-abdominale
 - Dysfonction diaphragmatique post-opératoire

 Réduction de la capacité motrice des muscles respiratoires dans les suites d'une intervention chirurgicale thoracique et/ou abdominale

Effets de la position sur les volumes pulmonaires


Prevention of Atelectasis Formation During Induction of General Anesthesia

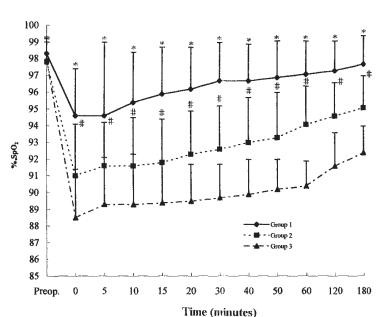
Marco Rusca, MD*, Stefania Proietti, MD+, Pierre Schnyder, MD+, Philippe Frascarolo, PhD*, Göran Hedenstierna, MD, PhD‡, Donat R. Spahn, MD*, and Lennart Magnusson, MD, PhD*

Departments of *Anesthesiology and †Diagnostic Radiology, University Hospital, Lausanne, Switzerland; and †Department of Clinical Physiology, University Hospital, Uppsala, Sweden

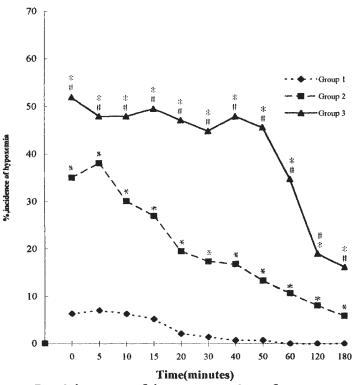
Anesth Analg 2003;97:1835-9

Before induction

After intubation


Atélectasies immédiates, 50% encore présentes à H24

Selon le type de chirurgie


Group 1: superficial plastic surgery

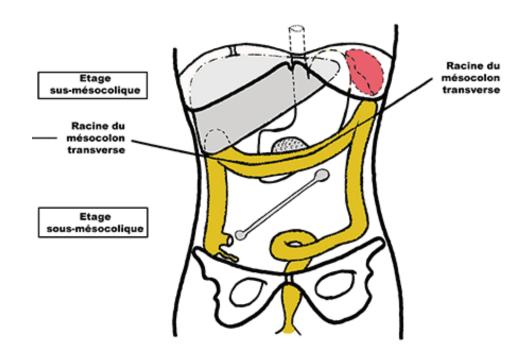
Group 2: upper abdominal surgery

Group 3: thoracoabdominal surgery

Spo2 in the early postoperative period while patients were breathing room air

Incidence of hypoxemia after surgery while patients were breathing room air

Xue FS et al. The influence of surgical sites on early postoperative hypoxemia in adults undergoing elective surgery. Anesth Analg 1999; 88:203–219.

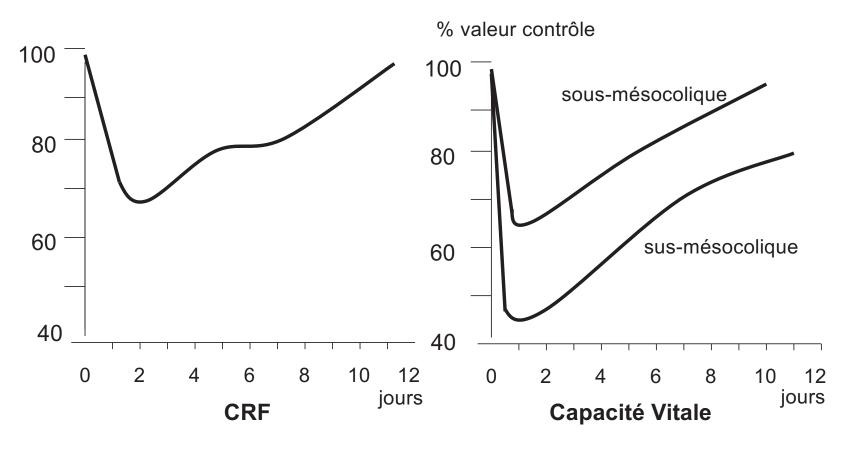

Selon le type de chirurgie

Group 1: superficial plastic surgery Group 2: upper abdominal surgery Group 3: thoracoabdominal surgery

	All patients $(n = 994)$	Group 1 (<i>n</i> = 288)	Group 2 (<i>n</i> = 452)	Group 3 (<i>n</i> = 254)
Recovery room				
Mild airway obstruction	65 (6.5)	16 (5.6)	32 (7.1)	17 (6.7)
Inadequate hemostasis	3 (0.3)	0 (0)	1 (0.2)	2 (0.79)
Hypothermia ^a	43 (4.3)	9 (3.1)	21 (4.7)	13 (6.7)
Fever ^b	31 (3.1)	18 (6.3)	9 (2.0)*	4 (1.6)*
Postoperative period	,	, ,	, ,	,
Upper airway infection	18 (1.8)	2 (0.7)	9 (2.0)	(2.8)
Intrathoracic infection ^c	8 (0.8)	0 (0)	1 (0.2)	7 (2.8)†
Intraabdominal infection	5 (0.5)	0 (0)	3 (0.6)	2 (0.8)
Death	1 (0.1)	0 (0)	0 (0)	1 (0.4)

Volumes pulmonaires après chirurgie

- Variation de la densité des récepteurs sympathiques viscéraux
- Etage sousmésocolique:
 - ⇒Pas de dysfonction diaphragmatique majeure
 - ⇒Peu de complications respiratoires

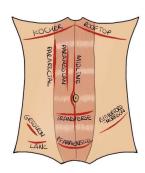

Etage sus-mésocolique

- Œsophage abdominal
- Estomac
- Duodéno-pancréas
- Rate
- Foie
- Voies biliaires

Etage sous-mésocolique

- Jéjuno-iléon (intestin grèle)
- Colon (gros intestin)
- Rectum

Volumes pulmonaires après chirurgie



Ford G et al; Diaphragm function after upper abdominal surgery in humans Am Rev Respir Dis 1983; 127: 431-6

Selon le type d'incision

Mean

Analysis 2.1. Comparison 2 pulmonary function, Outcome I Percentage change in vital capacity day I post-operative.

Mean

Review: Transverse verses midline incisions for abdominal surgery

Comparison: 2 pulmonary function

Outcome: I Percentage change in vital capacity day I post-operative

Study or subgroup	Transverse incision	M	dline incision		Diffe	rence	Weight	Difference
	Ν	Mean(SD)	Ν	Mean(SD)	IV,Fixe	d,95% CI		IV,Fixed,95% CI
Ali 1979	10	57 (5.5)	9	40 (5)		-	40.9 %	17.00 [12.28, 21.72]
Armstrong 1990	29	54 (16.5)	31	49 (15.5)	_	-	13.9 %	5.00 [-3.11, 13.11]
Lacy 1994	25	50 (13.8)	25	46 (19)	_	-	10.8 %	4.00 [-5.21, 13.21]
Lindgren 2001	21	68 (17)	19	68 (17)	-	-	8.2 %	0.0 [-10.55, 10.55]
Proske 2005	47	44 (16)	47	44 (13)	•	•	26.3 %	0.0 [-5.89, 5.89]
Total (95% CI)	132		131			•	100.0 %	8.08 [5.06, 11.10]
Heterogeneity: Chi ²	= 24.49, df = 4 (P = 0	.00006); I ² =84%						
Test for overall effect	Z = 5.24 (P < 0.0000)	OI)						
Test for subgroup diff	ferences: Not applicabl	le						
							1	
				-10	0 -50 (50	100	
				Favo	ours midline	Favours	transverse	

Recours à l'analgésie et la CV pulmonaire peuvent être réduits par une incision médiane

Brown SR, Tiernan J, Transverse verses midline incisions for abdominal surgery, October 5, 2011

Selon le type d'incision

ew: Transverse verses midline incisions for abdominal surgery

Comparison: 3 pulmonary complications

Outcome: 1 pulmonary complications

4

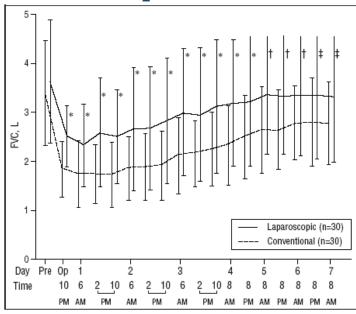
Study or subgroup	transverse n/N	midline n/N	Odds Ratio M-H,Fixed,95% CI	Odds Ratio M-H,Fixed,95% CI
Becquemin 1985	0/10	5/16	н	0.10 [0.00, 2.03]
Brown 2004	1/14	0/14		3.22 [0.12, 86.09]
Garcia-Valdecasas 1988	1/63	5/66		0.20 [0.02, 1.73]
Greenall 1980	97/286	84/286	- -	1.23 [0.87, 1.76]
Halm 2009	2/75	0/75		5.14 [0.24, 108.81]
Inaba 2004	6/196	11/199		0.54 [0.20, 1.49]
Lacy 1994	5/25	7/25	•	0.64 [0.17, 2.39]
Lindgren 2001	0/17	3/23	* *	0.17 [0.01, 3.47]
Seenu 1994	0/97	2/84	• •	0.17 [0.01, 3.58]
Sehnal 2008	0/19	0/23		0.0 [0.0, 0.0]
Seiler 2009	17/99	13/100		1.39 [0.63, 3.03]
otal (95% CI)	901	911	+	1.01 [0.76, 1.34]
otal events: 129 (transverse), 130	(midline)			
eterogeneity: Chi ² = 12.47, df = 9	$P (P = 0.19); I^2 = 28\%$			
est for overall effect: $Z = 0.08$ (P	= 0.94)			
est for subgroup differences: Not	applicable			
			0.1 0.2 0.5 1 2 5 10	
			Favours transverse Favours midline	

Pas de différence en terme de complication et de temps de récupération

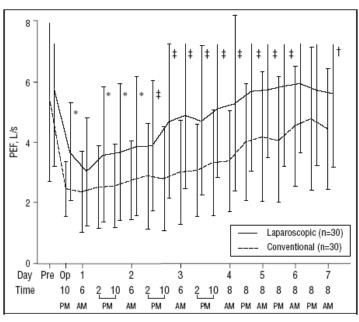
Brown SR, Tiernan J, Transverse verses midline incisions for abdominal surgery, October 5, 2011

Coeliochirurgie

	Ретсо ₂ (mm Hg)	MV (L/min)	Ppeak (cm H ₂ O)	Pplat (cm H ₂ O)	C (mL/cm H ₂ O)	V 1.0 (%)	n
During anesthesia							
Supine, lithotomy	35.2 (0.7)	6.4 (0.2)	14.0 (0.6)	13.5 (0.6)	50 (2.4)	76 (1.1)	20
Trendelenburg	35.0 (0.3)	5.3 (0.2)*	14.8 (0.6)	14.7 (0.6)	41 (2.4)*	81 (1.3)	20
During laparoscopy							
5 min	35.9 (0.3)	7.0 (0.3)*	22.7 (0.9)*	22.1 (0.8)*	28 (1.7)*	86 (1.2)*	20
20 min	35.6 (0.2)	7.4 (0.2)	23.3 (0.9)	22.8 (0.8)	28 (1.5)	86 (1.2)	20
35 min	35.4 (0.3)	7.6 (0.3)	23.8 (0.9)	23.2 (0.9)	27 (1.6)	87 (1.0)	20
50 min	35.8 (0.3)	7.7 (0.3)	23.8 (1.0)	23.1 (0.9)	26 (1.5)	88 (0.9)	20
65 min	35.6 (0.3)	8.0 (0.3)	24.5 (0.9)	24.1 (0.9)	27 (1.4)	87 (0.9)	19
80 min	35.6 (0.3)	7.8 (0.4)	25.0 (1.3)	24.5 (1.4)	27 (1.7)	87 (1.1)	14
Before deflation	35.5 (0.3)	8.0 (0.3)	24.5 (0.9)	24.1 (0.9)	26 (1.4)	88 (0.9)	20
After deflation							
Trendelenburg	35.9 (0.3)	8.3 (0.4)	19.2 (0.7)*	18.0 (0.7)*	40 (1.9)*	82 (0.9)*	20
Supine, lithotomy	35.4 (0.4)	7.0 (0.2)*	15.2 (0.5)*	14.5 (0.5)*	46 (2.2)*	78 (1.0)*	20


Results are given as mean (sE).

MV = minute ventilation; Ppeak = peak airway pressure; Pplat = plateau inspiratory pressure; C = compliance; V 1.0 = expiratory resistance.


- Au cours de la cœlioscopie, la pression des voies respiratoires ↑ et la compliance du système respiratoire ↓
- La compliance est diminuée de 20 % par la position de Trendelenburg et de 30 % par l'élévation de la pression intra-abdominale

^{*}Significantly different from the previous value: P < 0.05.</p>

Coelio vs laparo

Figure 1. Postoperative changes in forced vital capacity (FVC) following laparoscopic or conventional resection of colorectal tumors. Pre indicates preoperative measurement; Op, day of surgery; asterisk, P = .01; dagger, P < .05; and double dagger, P = .06.

Figure 3. Postoperative changes in peak expiratory flow (PEF) following laparoscopic or conventional resection of colorectal tumors. Pre indicates preoperative measurement; Op, day of surgery; asterisk, P<.05; dagger, P=.06; and double dagger, P<.01.

- Effets respiratoires moins prononcés et de plus courte durée
- CV et le VEMS se normalisent le plus souvent avant le 2^e jour postopératoire, alors que la normalisation de la CRF se fait entre le 3^e et le 5^e jour.

Schwenk W et al; Pulmonary function following laparoscopic or conventional colorectal resection Arch Surg 1999; 134: 6-12

Coelio vs laparo

Table 4 Postoperative atelectasis after laparoscopic (LC) or open (OC) cholecystectomy. $\star P < 0.05$ between groups (chi-square test for trend)

	LC (n=42)	OC (n=40)
Microatelectasis	7	14
Focal	3	7
Segmental	2	3
Lobar	0	0
Normal	30	15*

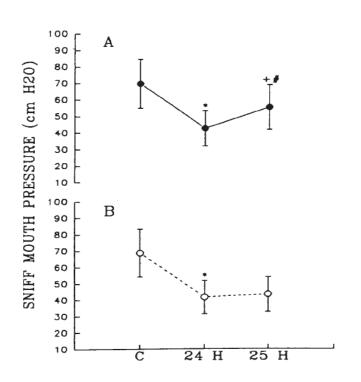
Radiographie thoracique avant et après la chirurgie

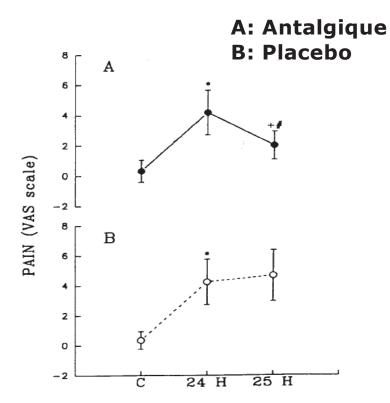
Coelio vs laparo

Short term benefits for laparoscopic colorectal resection (Review)

- Altération moindre de la fonction ventilatoire postopératoire
- Douleur postopératoire moindre
- Pas de différence en terme de morbidité pulmonaire
 OR: 0.70 [0.36-1.34]

Effets des agents anesthésiques

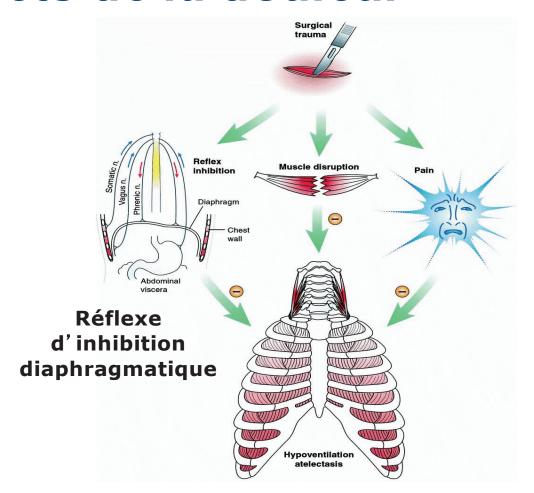

• Limités à la période postopératoire immédiate


=>Morphiniques

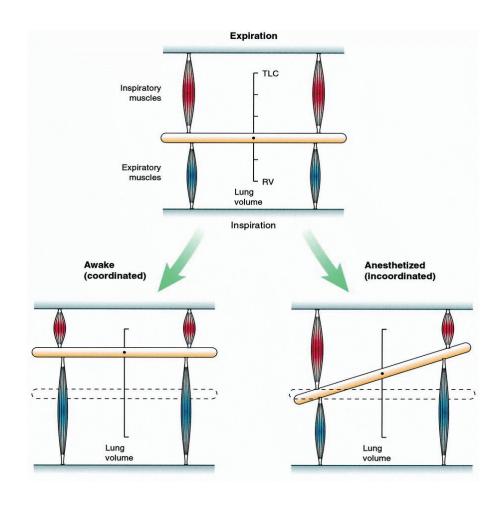
- √ Hypoventilation alvéolaire
- ✓Suppression de la toux et du soupir
- ✓ Dépression de la réponse ventilatoire à l'hypoxie, l'hypercapnie
- Dépression du tonus des muscles intercostaux
- Raccourcissement du périmètre thoracique

⇒Réduction de la compliance ⇒Réduction du VPT ⇒Réduction de la CRF d'environ 20% ⇒Zones d'atélectasies postop

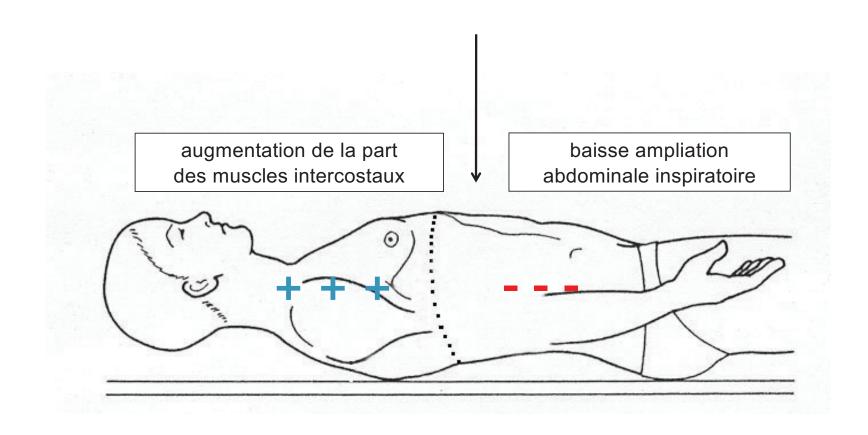
Effets de la douleur



Rôle dans le réflexe d'inhibition diaphragmatique probable => rôle des récepteurs abdominaux pariétaux?

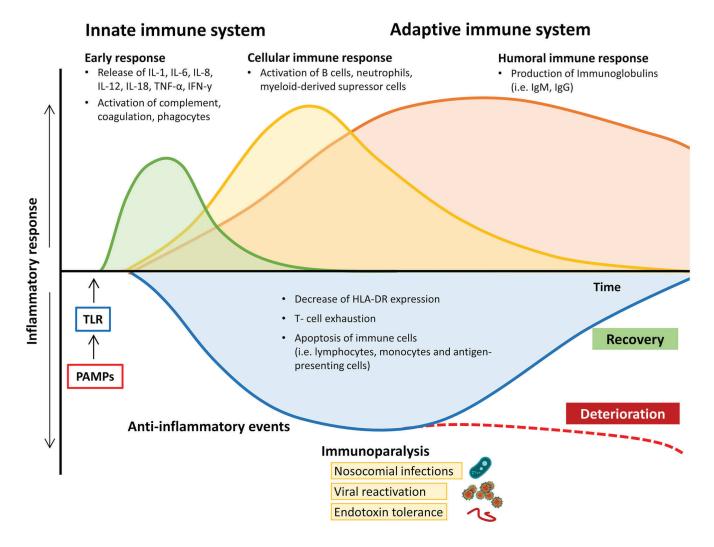

Vassilakopoulos T et al, Contribution of pain to inspiratory muscle dysfunction after upper abdominal surgery , Am J Respir Crit Care Med 2000 ; 161 : 1372-5

Effets de la douleur

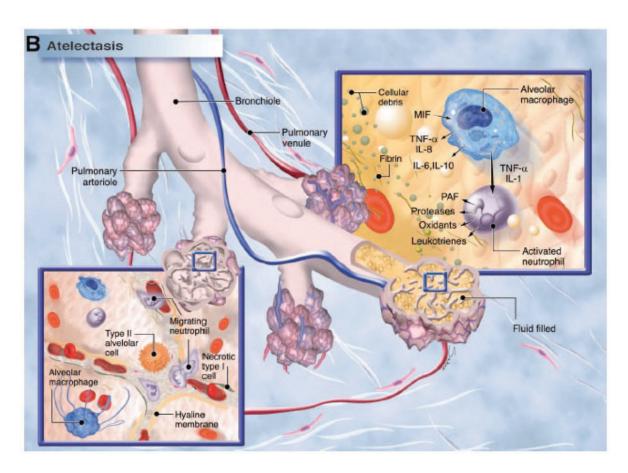


Origine multifactorielle:

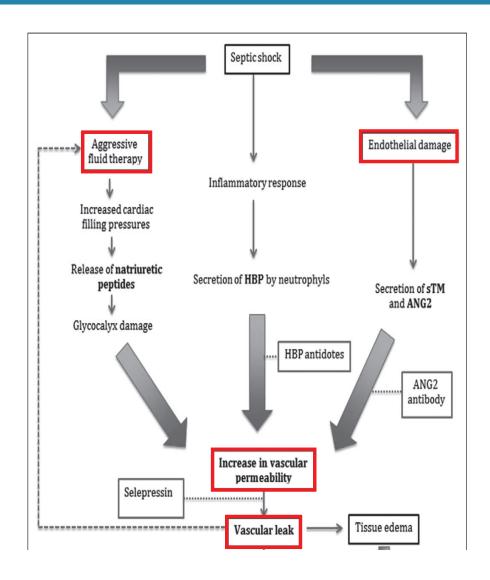
- « agression » chirurgicale
- inhibition phrénique réflexe
- réaction inflammatoire
- agents anesthésiques
- douleur postopératoire


- Patient normal: bonne synchronisation des muscles inspi et expi et fonctionnement du diaphragme tel un pisto
- Anesthésie: asynchronisme des muscles respiratoire. Réduction de type restrictive des volumes postop
 - · ↓ CRF
 - ↓ CV (30-40%)
 - ↑ Atelectasies
 - =>Maximale à J1
 - =>Durée jusqu'à J15

- Problématique?
- Physiopathologie
 - Hyperpression intra-abdominale
 - Dysfonction diaphragmatique post-opératoire
 - Atteinte alvéolo-capillaire


- Altération de l'épuration muco-ciliaire
 - ✓ Intubation endotrachéale
 - ✓ Conditionnement hydro thermique et FiO2 du gaz inhalé (atélectasie de résorption)
 - ✓ Ventilation mécanique
- Inhalation du liquide gastrique
- Altération du surfactant
 - Gaz halogénés
- Surcharge hydrosodée (remplissage excessif)

Exercice physique et Sepsis



Front. Med. 8:628302. doi: 10.3389/fmed.2021.628302

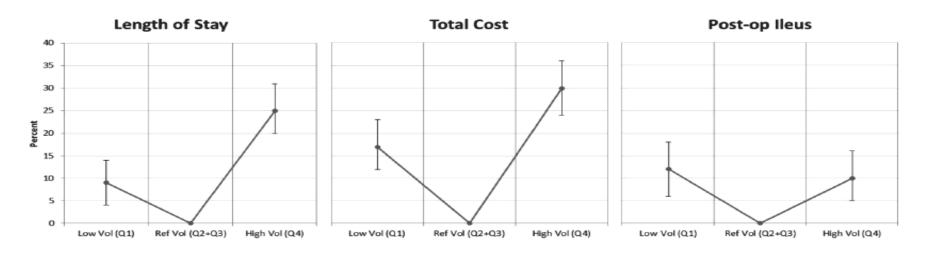
Inflammation

- ⇒Libération systémique des cytokines proinflammatoires
 - ⇒ Altération de la perméabilité de la membrane alvéolocapillaire

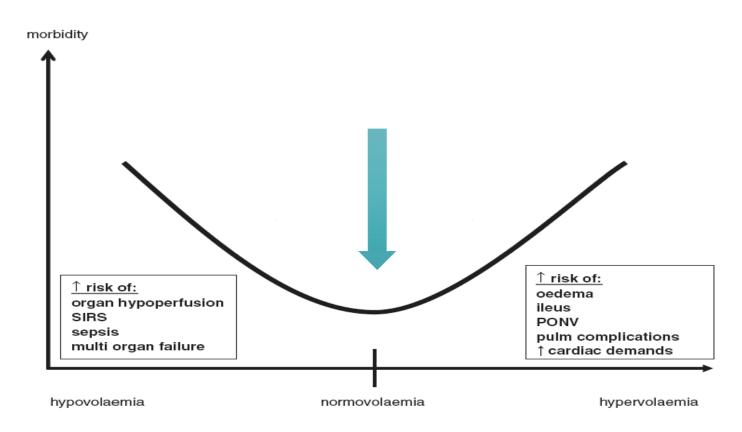
- Sepsis avec libération de cytokines
- Transfusion massive
- Lésions de cisaillement alvéolaire

Crit Care Med. 2016 Dec;44(12):2263-2269.

Déséquilibre de la volémie



Perioperative Fluid Utilization Variability and Association With Outcomes


Considerations for Enhanced Recovery Efforts in Sample US Surgical Populations

Chirurgie colique n= 84722

Morbidité de l'hypovolémie ET l'hypervolémie

Déséquilibre de la volémie

Effect of goal-directed haemodynamic therapy on postoperative complications in low—moderate risk surgical patients: a multicentre randomised controlled trial (FEDORA trial)

Moderate and severe complications (n GDHT = 209 vs n Control = 211)	GDHT n (%)	Control n (%)		Odds Ratio (95% CI)	p-value
Patients with at least one moderate or severe complication	n 18 (8.61%)	35 (16.58%)	-	0.48 (0.27, 0.89)	0.018*
Subgroups by surgical procedure					
Gastrointestinal (150 vs 154)	11 (7.33%)	25 (16.23%)		0.41 (0.19, 0.86)	0.020*
Urology (48 vs 38)	6 (12.5%)	5 (13.16%)		0.94 (0.26, 3.36)	>0.999
Gynecologic (11 vs 19)	1 (9.09%)	5 (26.32%)		0.28 (0.03, 2.78)	0.372
Approach					
Open (104 vs 102)	13 (12.5%)	19 (18.63%)		0.62 (0.29, 1.34)	0.253
Laparoscopic (105 vs 109)	5 (4.76%)	16 (14.68%)		0.29 (0.1, 0.82)	0.020*
Type of complication					
Stroke	0 (0%)	0 (0%)	-	1 (0.02, 51.12)	>0.999
AKI	3 (1 44%)	18 (8 53%)		0 16 (0 05 0 54)	0.001*
ARDS	1 (0.48%)	12 (5.69%)		0.08 (0.01, 0.62)	0.003*
Anastomotic Breakdown	1 (0.48%)	5 (2.37%)	-	0.2 (0.02, 1.71)	0.215
Arrhytmia	2 (0.96%)	6 (2.84%)		0.33 (0.07, 1.65)	0.284
Cardiac Arrest	0 (0%)	2 (0.95%)	-	0.25 (0.01, 5.59)	0.499
Cardiopulmonary Oedema	0 (0%)	11 (6.16%)	-	0.04 (0.01, 0.74)	< 0.001*
DVT	0 (0%)	0 (0%)		1 (0.02, 51.12)	>0.999
Delirium	0 (0%)	4 (1.9%)	-	0.12 (0.01, 2.36)	0.123
Gastrointestinal Bleed	0 (0%)	1 (0.95%)	-	0.5 (0.01, 15.09)	>0.999
Infection Source Uncertain	0 (0%)	13 (6.16%)		0.04 (0.01, 0.62)	<0.001*
Bloodstream Infection	0 (0%)	1 (0.95%)	-	0.5 (0.01, 15.09)	>0.999
Myocardial Infarction	0 (0%)	1 (0.95%)	-	0.5 (0.01, 15.09)	>0.999
MINS	1 (0.48%)	1 (0.47%)		1 (0.06, 16.25)	>0.999
Pneumonia	4 (1.91%)	18 (8.53%)		0.21 (0.07, 0.63)	0.003*
Paralytic lleus	12 (5.74%)	15 (7.11%)		0.8 (0.36, 1.74)	0.691
Postoperative Haemorrhage	0 (0%)	4 (1.9%)	-	0.12 (0.01, 2.36)	0.123
PE	0 (0%)	0 (0%)	-	1 (0.02, 51.12)	>0.999
Surgical Site Infection (Superficial)	2 (0.96%)	10 (4.74%)		0.19 (0.04, 0.89)	0.036*
Surgical Site Infection (Deep)	4 (1.91%)	17 (8.06%)		0.22 (0.07, 0.67)	0.006*
Surgical Site Infection (Organ-Space)	6 (2.87%)	7 (3.32%)	-	0.86 (0.28, 2.61)	>0.999
Urinary Tract Infection	0 (0%)	3 (1.42%)	-	0.16 (0.01, 3.34)	0.248
			0.01 1.00 Odds Ratio	100.00	

BJA

Monitoring du remplissage vasculaire

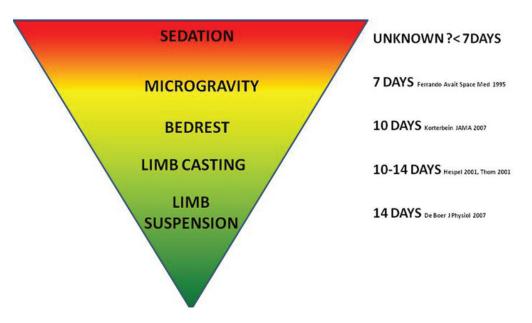
- Etude prospective, multicentrique randomisée
- Chirurgie majeure programmée
- Groupe interventionnel avec MAP >70 mm Hg et IC >2.5 vs traitement standard
- 450 patients inclus

British Journal of Anaesthesia, 120 (4): 734e744 (2018)

- Problématique?
- Physiopathologie
 - Hyperpression intra-abdominale
 - Dysfonction diaphragmatique post-opératoire
 - Atteinte alvéolo-capillaire
 - Fonte de la masse musculaire

Perte de la masse musculaire

The impact of extended bed rest on the musculoskeletal system in the critical care environment



Selina M. Parry^{1*} and Zudin A. Puthucheary^{2,3}

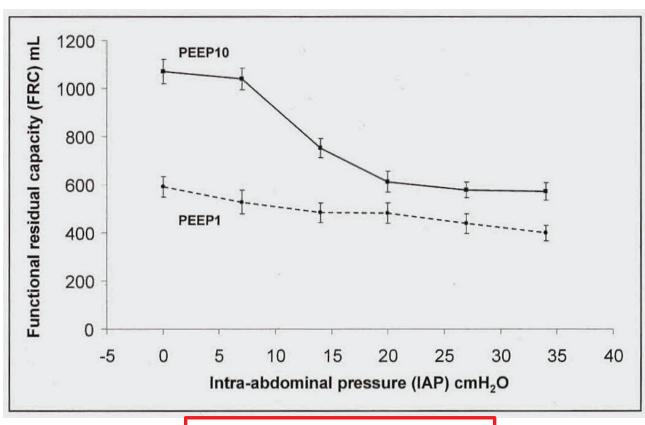
Réductions de la masse musculaire et de la densité osseuse, en parallèle, des altérations des autres systèmes du corps humain qui apparaissent dès les premiers jours

THE IMMOBILITY PYRAMID

Extrem Physiol Med. 2015 Oct 9;4:16

- Problématique
- Physiopathologie
- Exemple clinique

- Patiente de 36 ans en surcharge pondérale
- Prise en charge pour un tableau de coliques hépatiques récidivantes depuis plusieurs mois.
- Empierrement cholédocien à la bili-IRM
- Chirurgie programmée difficile (8h). Conversion par laparotomie souscostale. Extraction de lithiase de la voie biliaire principale mécanique et par lithotripsie au laser.
- Sepsis périopératoire et détresse respiratoire
 - => Réintubation à J2
- Pancréatite aiguë sur TDM


Evolution respiratoire initialement favorable
 => PIA=18mmHg

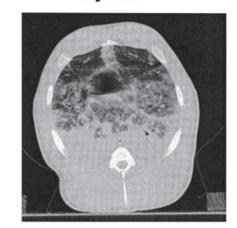
- Puis brutale dégradation respiratoire à **J10**
 - Fi02=100%; P/F=60, Sa02 à 85%
 - Curarisation + DV + NO
 - Sécrétions sales et abondantes
 - Majoration de la PIA à 26 mmHg (20 après curarisation)

Vt=5ml/kg Autopep=2 FiO2=100%

	12h	14h	16h	20h
Vt	270	270	270	270
PEEP tot	8	12	16	20
FR	27	27	27	27
Pplat	38	41	40	45
Sa02	84	88	90	95

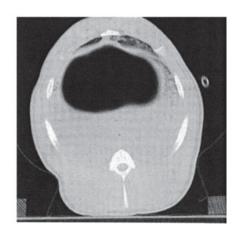
Relation CRF-volume de fermeture

PEEP minimise la réduction de CRF


Crit Care Med 2013; 41:1870-1877)

Healthy

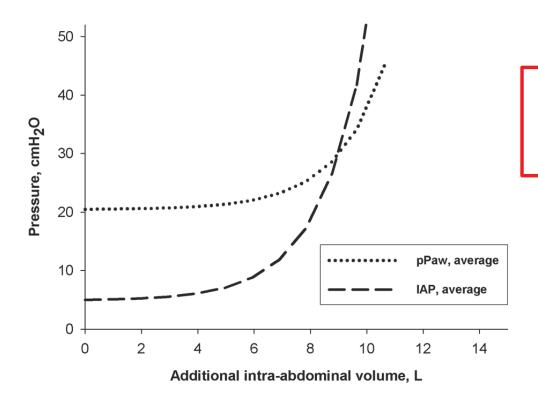
Injured



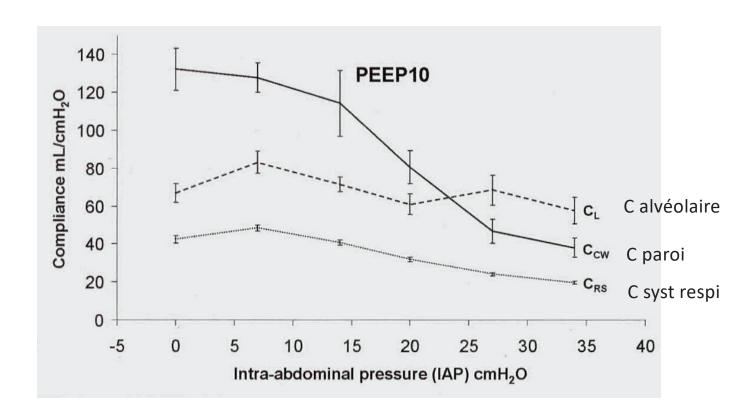
20 cmH₂O IAP

Am J Respir Crit Care Med. 2004 Feb 15;169(4):534-41

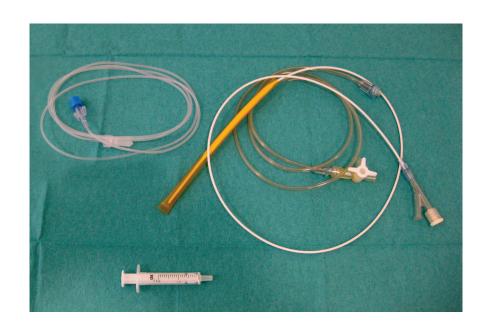
Ventilation protectrice?

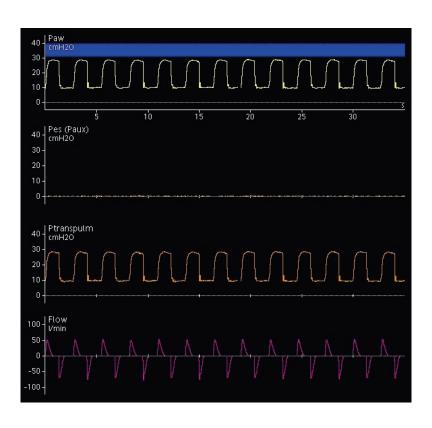

	12h	14h	16h	20h
Vt	270	270	270	270
PEEP tot	8	12	16	20
FR	27	27	27	27
Pplat	38	41	40	45
Pression motrice	30	29	24	25
Sa02	84	88	90	95

Pression motrice= variation de pression alvéolaire induite par le volume courant Reflet de la compliance dynamique

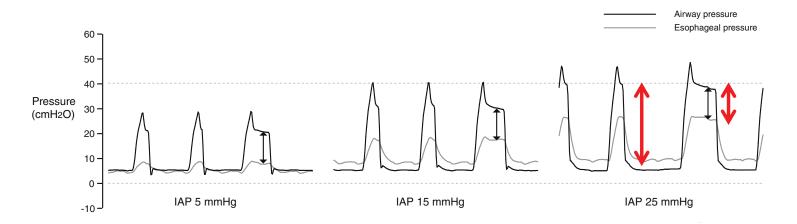


The respiratory pressure—abdominal volume curve in a porcine model


Adrian Regli^{1,2,3,4*}, Bart Leon De Keulenaer^{1,3}, Bhajan Singh^{6,7,8}, Lisen Emma Hockings^{2,5}, Bill Noffsinger^{6,8} and Peter Vernon van Heerden^{2,3,9}



⇒ Augmentation exponentielle de la Pplat

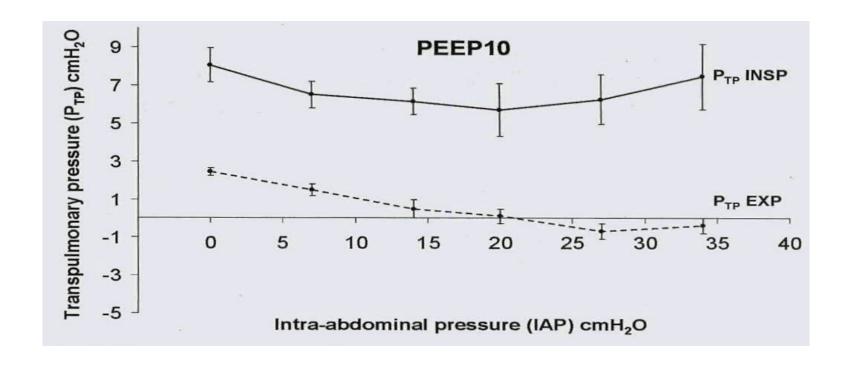

⇒Atteinte de la compliance pariétale ⇒Pas d'atteinte de la compliance alvéolaire

Driving pressure: a marker of severity, a safety limit, or a goal for mechanical ventilation?

Guillermo Bugedo * [6], Jaime Retamal and Alejandro Bruhn

- ⇒ Surestimation de la PM des voies aériennes en cas d'HIA
- ⇒ PM **transpulmonaire** reste constante

Vt	270
PEEP tot	15
FR	27
Pplat	41
Ppl Inspi	30
Ppl Expi	19
PTP Inspi	11
PTP Expi	-4

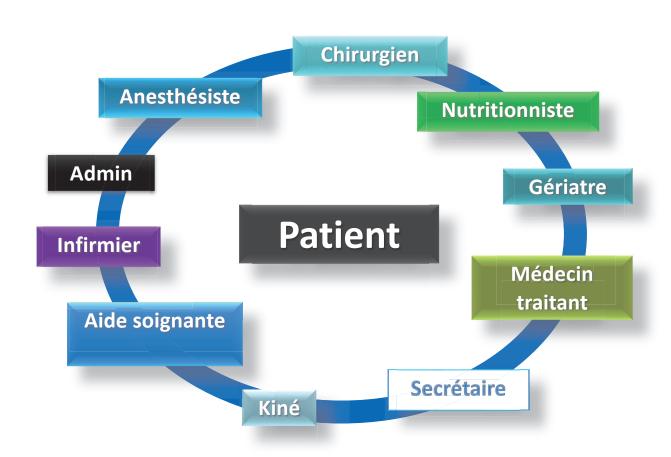

PM transpulmonaire (Pplat-PEEP)-(Ppli-Pple) =15

PTP inspi = Plat – Ppl inspi PTP expi = PEEP – Ppl expi

Vt	270
PEEP tot	15
FR	27
Pplat	41
Ppl Inspi	30
Ppl Expi	19
PTP Inspi	11
PTP Expi	-4

PTP inspi = Plat – Ppl inspi PTP expi = PEEP – Ppl expi

Lésions de cisaillement



PTPexp négative = Collapsus alvéolaire

- Problématique
- Physiopathologie
- Interlude: cas clinique
- Prise en charge

Récupération accélérée

Approche multidisciplinaire pour une prise en charge globale

Récupération accélérée

Organisation spécifique des soins selon un «chemin clinique»

Informer le patient et le former à la démarche

Anticiper l'organisation des soins et la sortie du patient

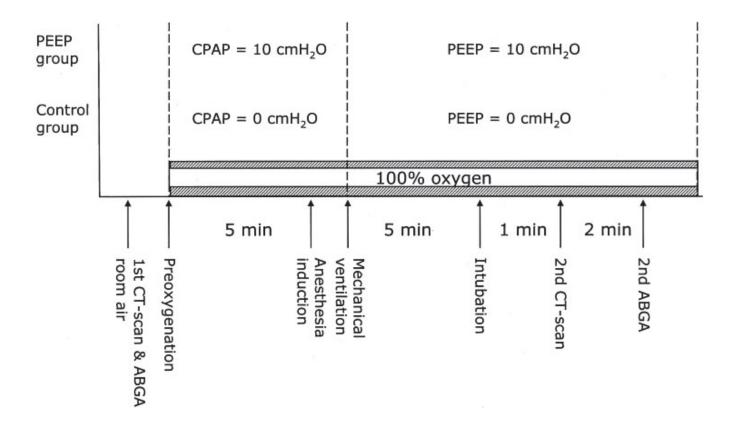
Réduire les conséquences du **stress chirurgical**

Contrôler la douleur dans toutes les situations

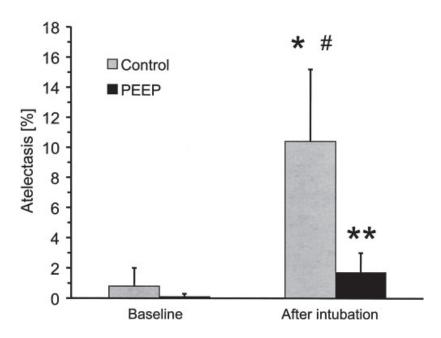
Favoriser et stimuler **l'autonomie** des patients

Récupération accélérée

- Information
- Optimisation comorbidités
- Nutrition
- Jeûne / liquide sucré
- Prémédication
- Thromboprophylaxie ?


- Epargne morphinique
- •ALR
- Apport liquidiens
- Thermorégulation
- Prévention NVPO
- ABprophylaxie

Post-op

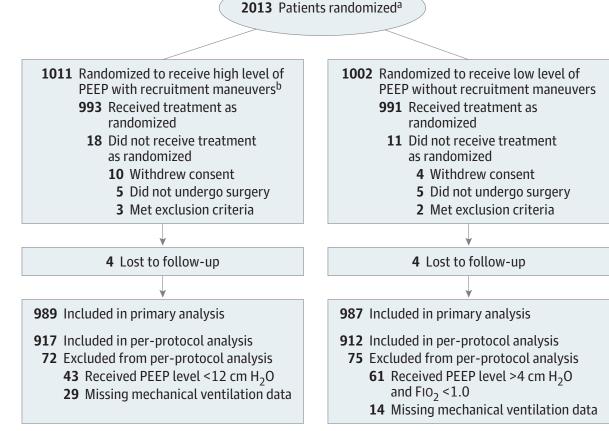

- Analgésie multimodale
- Péridurale, AINS ?
- Lever précoce
- Retrait sonde vésicale
- Alimentation rapide
- Thromboprophylaxie

VNI à l'induction

Coussa M et al. Prevention of atelectasis formation during the induction of general anesthesia in morbidly obese patients. Anesth Analg 2004; 98:1491–1495

VNI à l'induction

	Control $(n = 9)$	PEEP $(n = 9)$	P-value
Pao ₂ before induction (mm Hg) (Fio ₂ = 0.21)	$80 \pm 7 (66-87)$	85 ± 8 (71–94)	0.10
Pao ₂ after induction (mm Hg) (Fio ₂ = 1.0)	$315 \pm 100 (223-480)$	457 ± 130 (231–610)	0.035
Paco ₂ before induction (mm Hg)	$36 \pm 3 (30-40)$	$36 \pm 3 (32-41)$	0.76
Paco ₂ after induction (mm Hg)	$40 \pm 4 (34-45)$	$36 \pm 7 (29-52)$	0.07

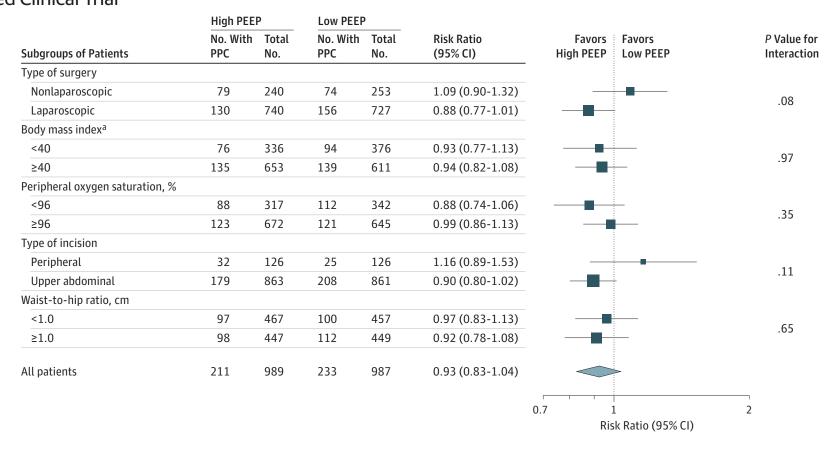

Coussa M et al. Prevention of atelectasis formation during the induction of general anesthesia in morbidly obese patients. Anesth Analg 2004; 98:1491–1495

PEEP Peropératoire

Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients

A Randomized Clinical Trial

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT



JAMA. 2019 Jun 18;321(23):2292-2305

PEEP Peropératoire

Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients A Randomized Clinical Trial

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

JAMA. 2019 Jun 18;321(23):2292-2305

Ventilation protectrice peropératoire

ORIGINAL ARTICLE

A Trial of Intraoperative Low-Tidal-Volume Ventilation in Abdominal Surgery

Lung-Protective Ventilation

VT 6 to 8 ml/kg PBW PEEP 6 to 8 cmH₂O Recruitment Maneuver

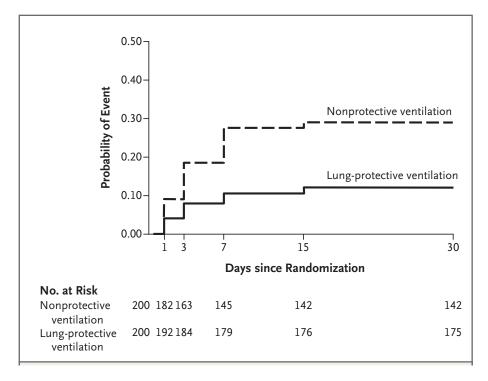
Recitification Maneuver

Traditional Ventilation

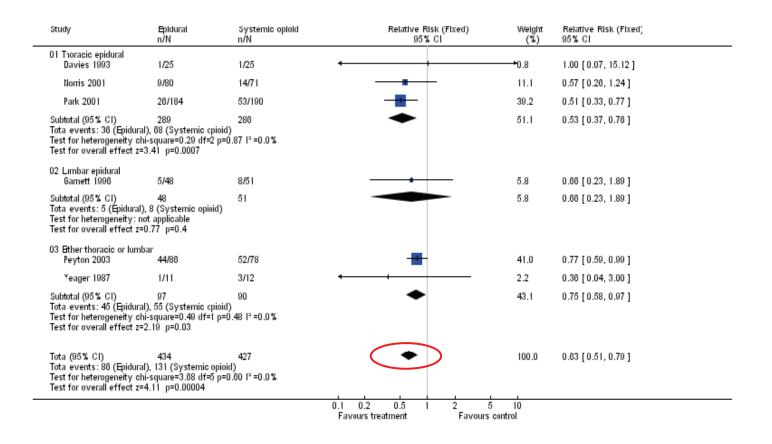
VT 10 to 12 ml/kg PBW
No PEEP
No Recruitment Maneuver

Recruitment maneuver = CPAP 30 cm H_2O during 30 sec After intubation and every 30min thereafter

In both groups:

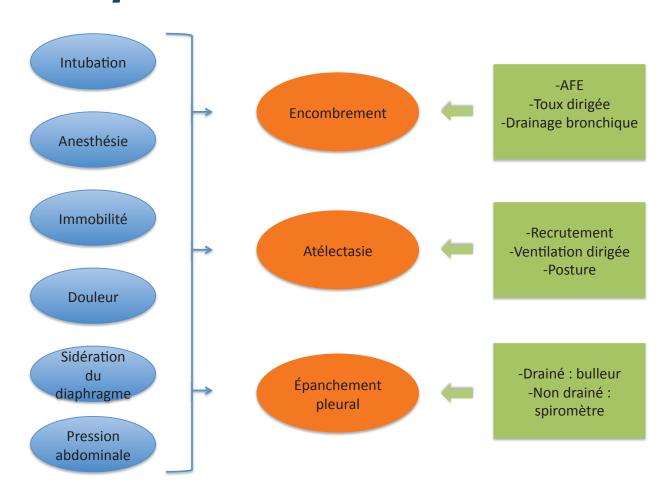

- Plateau pressure < 30 cmH₂O
- Volume-controlled ventilation mode
- FiO₂ adjusted to maintain SpO₂ ≥ 95%
- RR adjusted to maintain ETCO2 between 35 and 40 mmHg

VS.


Ventilation protectrice peropératoire

ORIGINAL ARTICLE

A Trial of Intraoperative Low-Tidal-Volume Ventilation in Abdominal Surgery


Analgésie postopératoire

Analgésie péridurale

Stratégies préventives

Kinésithérapie

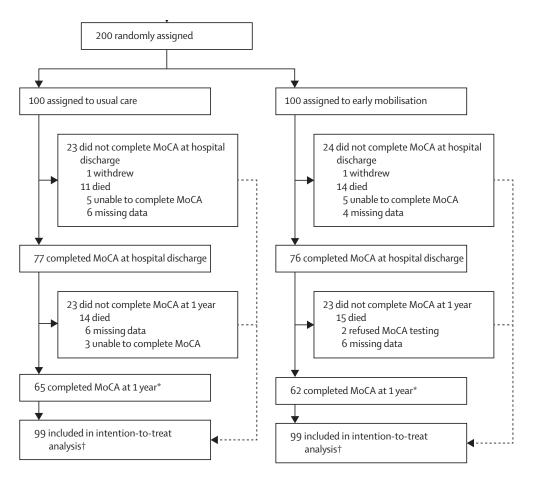
Stratégies préventives

Preoperative Intensive Inspiratory
Muscle Training to Prevent Postoperative
Pulmonary Complications in High-Risk
Patients Undergoing CABG Surgery
A Randomized Clinical Trial

Table 2. Duration of Postoperative Hospitalization and Level of PPCs Between the IMT and Usual Care Groups*

Outcome	IMT Group (n = 139)	Usual Care Group (n = 137)	Odds Ratio (95% CI)	<i>P</i> Value
Duration of postoperative hospitalization, median (range), d	7 (5-41)	8 (6-70)		.02
Level of PPC Grade 1	114 (82.0)	89 (65.0)	1.90 (1.09-3.38)	.02
Grade 2	14 (10.1)	18 (13.1)	0.63 (0.41-0.95)	.02
Grade 3	10 (7.2)	24 (17.5)	0.44 (0.23-0.84)	.01
Grade 4	1 (0.7)	6 (4.4)	0.20 (0.02-1.64)	.09
PPC grade ≥2	25 (18.0)	48 (35.0)	0.52 (0.30-0.92)	.02
Pneumonia	9 (6.5)	22 (16.1)	0.40 (0.19-0.84)	.01

Abbreviations: Cl, confidence interval; IMT, inspiratory muscle training; PPC, postoperative pulmonary complication. *Data are presented as number (percentage) unless otherwise specified.


Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial

Bhakti K Patel, Krysta S Wolfe, Shruti B Patel, Karen C Dugan, Cheryl L Esbrook, Amy J Pawlik, Megan Stulberg, Crystal Kemple, Megan Teele, Erin Zeleny, Donald Hedeker, Anne S Pohlman, Vineet M Arora, Jesse B Hall, John P Kress

Patients adultes (âgés de ≥18 ans) sans déficit fonctionnel et ventilés mécaniquement pour une durée > 24h

Au cours des 96 premières heures de ventilation mécanique

Single-centre, parallel, randomised controlled trial

Lancet Respir Med . 2023 Jun;11(6):563-572

Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial

Bhakti K Patel, Krysta S Wolfe, Shruti B Patel, Karen C Dugan, Cheryl L Esbrook, Amy J Pawlik, Megan Stulberg, Crystal Kemple, Megan Teele, Erin Zeleny, Donald Hedeker, Anne S Pohlman, Vineet M Arora, Jesse B Hall, John P Kress

	Usual care group (n=99)	Intervention group (n=99)
Age, years	54·5 (41·9–64·7)	57.9 (42.3–66.8)
Sex		
Female	44 (44%)	41 (41%)
Male	55 (56%)	58 (59%)
Race		
African American	72 (73%)	68 (69%)
White, non-Hispanic	21 (21%)	26 (26%)
White, Hispanic	4 (4%)	4 (4%)
Asian	2 (2%)	1 (1%)
Barthel Index Score	100 (100–100)	100 (100–100)
BMI, kg/m²	29.8 (24.2–35.2)	28-2 (23-7-33-1)
Level of education		
High school education or higher	91 (92%)	91 (92%)
Less than high school education	8 (7%)	8 (7%)
APACHE II score	23 (16–27)	23 (18–29)

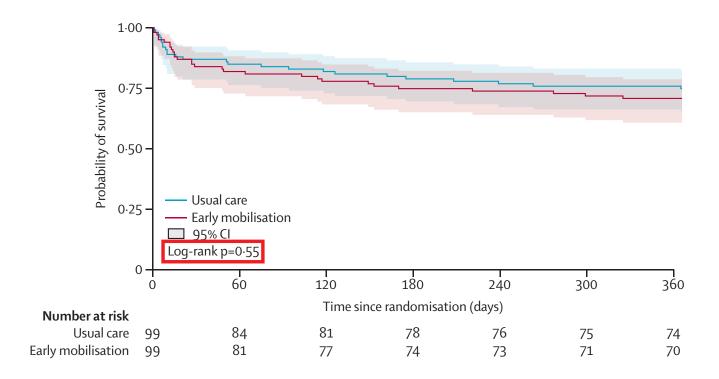
	Usual care group (n=99)	Intervention group (n=99)
Sepsis*	56 (57%)	63 (64%)
Diabetes	26 (26%)	23 (23%)
Primary diagnosis for ICU admiss	ion	
Acute hypoxaemic respiratory failure	35 (35%)	44 (44%)
Acute ventilatory failure	24 (24%)	17 (17%)
Threatened airway	21 (21%)	19 (19%)
Sepsis*	12 (12%)	14 (14%)
Liver failure	3 (3%)	1 (1%)
Gastrointestinal haemorrhage	1 (1%)	2 (2%)
Other	3 (3%)	2 (2%)

Lancet Respir Med . 2023 Jun;11(6):563-572.

Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial

Bhakti K Patel, Krysta S Wolfe, Shruti B Patel, Karen C Dugan, Cheryl L Esbrook, Amy J Pawlik, Megan Stulberg, Crystal Kemple, Megan Teele, Erin Zeleny, Donald Hedeker, Anne S Pohlman, Vineet M Arora, Jesse B Hall, John P Kress

	Usual care group (n=99)	Intervention group (n=99)	p value
Time from intubation to first PT or OT session (days)	4-7 (3-3-6-8)	1.1 (0.8–2.0)	<0.0001
Number of daily therapy sessions			
Mechanical ventilation	0 (0-0)	2 (1–3)	<0.0001
ICU admission	0 (0-1)	4 (2-6)	<0.001
During hospitalisation	2 (1-4)	5 (3-9)	<0.0001
Delirium duration in ICU (days)	1 (0-3)	0 (0-2)	0.0050
Proportion of ICU days in delirium	25% (0–55.6)	0% (0-28.6)	0.0011
Coma duration in ICU (days)	0 (0-1)	0 (0-0)	0.62
Proportion of ICU days in coma	0% (0-6·3)	0% (0-0)	0.67
Data are median (IOR) or n (%) unless otherwise	a stated ICII-intensive care	unit OT-occupational therap	v PT-physical


Data are median (IQR) or n (%), unless otherwise stated. ICU=intensive care unit. OT=occupational therapy. PT=physical therapy. *Days 1–28. †Home discharge without need for services versus all other discharge possibilities.

Sedation and analgesia			
Patients with propofol infusion	71 (72%)	69 (70%)	0.75
Propofol dose, mg/day	1872-4 (915-2-2803-0)	1259-9 (550-1–2615-0)	0.093
Patients with dexmedetomidine infusion	48 (49%)	48 (49%)	1.00
Dexmedetomidine dose, μg per day	417-8 (99-9-1452-1)	441.7 (221.9–1030.3)	0.97
Patients with benzodiazepine infusion	9 (9%)	12 (12%)	0.49
Benzodiazepine dose, mg per day	21.6 (7.8–39.9)	22.3 (8.1–38.1)	1.00
Patients with opiate infusion	84 (85%)	77 (78%)	0.20
Fentanyl dose, µg per day	1647-2 (652-2-2448-2)	1084-1 (531-1-2404-1)	0.32
Ventilator free days*	24.6 (20.8–26.1)	25.2 (22.9–26.4)	0.18
Duration of mechanical ventilation (days)	3.4 (1.9-6.0)	2.7 (1.6-4.5)	0.11
ICU length of stay (days)	5.6 (2.9–9.8)	4.7 (3.0-8.9)	0.51
Hospital length of stay (days)	9·5 (6·0–17·3)	9.7 (5.9–16.8)	0.70
Discharge destination			
Death	11 (11%)	14 (14%)	
Hospice	2 (2%)	2 (2%)	
Outside hospital	4 (4%)	1 (1%)	
Long-term acute care	7 (7%)	4 (4%)	
Subacute rehabilitation	10 (10%)	4 (4%)	
Acute rehabilitation	12 (12%)	12 (12)	
Home with outpatient therapy	17 (17%)	11 (11%)	
Home	36 (36%)	51 (52%)	0.032†

Lancet Respir Med . 2023 Jun;11(6):563-572.

Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial

Bhakti K Patel, Krysta S Wolfe, Shruti B Patel, Karen C Dugan, Cheryl L Esbrook, Amy J Pawlik, Megan Stulberg, Crystal Kemple, Megan Teele, Erin Zeleny, Donald Hedeker, Anne S Pohlman, Vineet M Arora, Jesse B Hall, John P Kress

Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial

Bhakti K Patel, Krysta S Wolfe, Shruti B Patel, Karen C Dugan, Cheryl L Esbrook, Amy J Pawlik, Megan Stulberg, Crystal Kemple, Megan Teele, Erin Zeleny, Donald Hedeker, Anne S Pohlman, Vineet M Arora, Jesse B Hall, John P Kress

	Usual care group (n=99)	Intervention group (n=99)	Absolute difference	p value
Primary outcome				
Cognitive impairment at 1 year	43 (43%)	24 (24%)	-19·2%(-32·1 to -6.3)	0.0043
MoCA* score at 1 year	23 (21–26)	26 (24–28)	3 (1 to 4)	0.0001
Hospital discharge outcome				
Cognitive impairment	68 (69%)	53 (54%)	-15·2% (-28·6 to -1·7)	0.029
MoCA score	20 (16–23)	23 (19–27)	3 (2 to 5)	0.0004
ICU-acquired weakness†	38 (38%)	21 (21%)	-17·1% (-29·7 to -4·7)	0.0083
Total MRC score	49 (44–56)	56 (48-60)	7 (1 to 9)	0.0017
Functional independence	46 (47%)	66 (67%)	20·2% (6·7 to 33·7)	0.0041
Quality of life				
SF-36 physical component score	39.6 (31.8–48.5)	45.7 (29.7–55.6)	4·1 (-0·53 to 8·4)	0.081
Impaired physical health‡	39 (39%)	29 (29%)	-10·1% (-23·3 to 3·1)	0.13
SF-36 mental component score	47-6 (38-3–55-3)	53·3 (44·3–57·2)	5·7 (-0·16 to 6·9)	0.061
Impaired mental health	22 (22%)	13 (13%)	-9·1% (-19·6% to 1·5)	0.094

	Usual care group (n=99)	Intervention group (n=99)	Absolute difference	p value
1-year follow-up				
ICU-acquired weakness	14 (14%)	0	-14·1% (-21·0 to -7·3)	0.0001
Total MRC score	56 (49–60)	58 (56–60)	2 (0 to 4)	0.0073
Functional independence	61 (62%)	64 (65%)	3·0% (-10·4 to 16·5)	0.66
Quality of life				
SF-36 physical component score	41.1 (31.8–49.4)	52.4 (45.3–56.8)	11·3 (6·3 to 13·8)	<0.0001
Impaired physical health	30 (30%)	8 (8%)	-22·2% (-32·7 to -11·7)	0.0001
SF-36 mental component score	55·2 (49·5–59·7)	55-9 (50-2–58-9)	0·7 (-2·7 to 2·3)	0.98
Impaired mental health	9 (9%)	7 (7%)	-2·0% (-9·6 to 5·6)	0.60
Institution-free days	335 (121–356)	338 (111–355)	3 (-8 to 5)	0.88

Data are n (%) or median (IQR), unless otherwise specified. ICU=intensive care unit. MoCA=Montreal Cognitive Assessment. MRC=Medical Research Council. SF-36=Medical Outcomes Study Short Form-36 *MoCA score of less than 26 defined cognitive impairment. \dagger ICU-acquired weakness defined as a combined MRC score of less than 48. \ddagger At least 1SD below population norms (ie, <40).

Lancet Respir Med . 2023 Jun;11(6):563-572.

MONTREAL C Version 7.1	OGNITIVE ASSES FRANÇAIS	SMENT	(MOCA)	NOI Scolarit Sex	é: D	ate de naiss	sance : DATE :	
VISUOSPATIAL / (E) Fin Debut (D)	(A) (B) (2) (4) (3)			Copier le cube	Dessiner HO (3 points)	RLOGE (11 h	10 min)	POINTS
	[]			[]	[] Contour	[] Chiffres	[] Aiguilles	/5
DÉNOMINAT								/3
MÉMOIRE Faire 2 essais mêm Faire un rappel 5 m	Lire la liste de mots, le patient doit répéter. e si le 1er essai est réussi. in après.	1 ^{er} essai 2 ^{ème} essai	VISAGE	VELOURS	ÉGLISE N	MARGUERITE	ROUGE	Pas de point
ATTENTION	Lire la série de chiffres (1		Le patien	t doit la répé	oit la répéter. [ter à l'envers. [] 2 1 8 5	4	/2
	s. Le patient doit taper de l	-1	[] FBA	CMNAAJ	KLBAFAKE			/1
Soustraire série de 7	à partir de 100.] 93 4 ou 5 soustra	[] 86 ctions correctes	[] 79 : 3 pts, 2 ou 3 o	9 [] correctes : 2 pts, 1 c] 65 correcte : 0 pt	/3
LANGAGE	Répéter : Le colibri a dép							/2
ABSTRACTION	Fluidité de langage. Nommer un maximum de mots commençant par la lettre «F» en 1 min [](N≥11 mots) ABSTRACTION Similitude entre ex: banane - orange = fruit [] train - bicyclette [] montre - règle					_/1		
RAPPEL	Doit se souvenir des mots SANS INDICES Indice de catégorie	VISAGE []	VELOURS	ÉGLISE	MARGUERITI		Points pour rappel SANS INDICES seulement	/5
Optionnel	Indice choix multiples						1	_
ORIENTATION	[] Date [] Mois	[] Anné			Endroit	[] Ville	/6
© Z.Nasreddine MD Administré par :		www.me	ocatest.org	Nor	rmal ≥ 26 / 30	TOTAL Ajouter 1 poin	t si scolarité≤	/30 12 ans

Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial

Bhakti K Patel, Krysta S Wolfe, Shruti B Patel, Karen C Dugan, Cheryl L Esbrook, Amy J Pawlik, Megan Stulberg, Crystal Kemple, Megan Teele, Erin Zeleny, Donald Hedeker, Anne S Pohlman, Vineet M Arora, Jesse B Hall, John P Kress

Effets indésirables

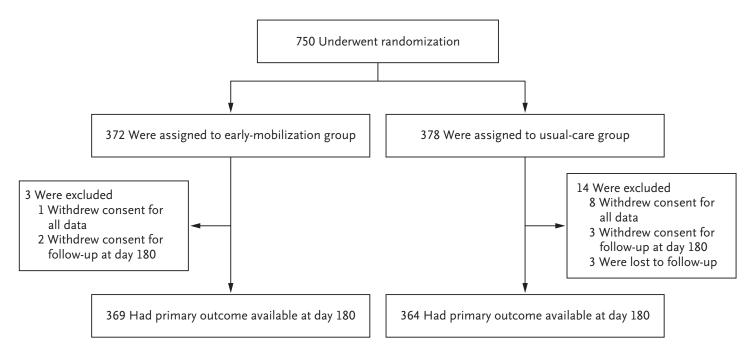
	Usual care group (n=99)	Intervention group (n=99)	p value		
At least one AE due to mobilisation	0 (0%)	6 (6%)	0.029		
Type of AE					
Tachycardia	0 (0%)	2 (2%)	1.00		
Hypotension	0 (0%)	1 (1%)	1.00		
Tachypnoea	0 (0%)	1 (1%)	1.00		
Oxygen desaturation	0 (0%)	1 (1%)	1.00		
Arterial catheter removal	0 (0%)	1 (1%)	1.00		
Rectal tube removal	0 (0%)	1 (1%)	1.00		
Data are n (%). More than one adverse event (AE) occurs in one patient.					

ORIGINAL ARTICLE

Early Active Mobilization during Mechanical Ventilation in the ICU

The TEAM Study Investigators and the ANZICS Clinical Trials Group*

TEAM trial


Minimisation de la sédation

Kinésithérapie quotidienne

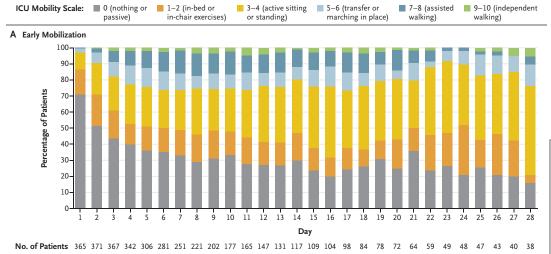
Mobilisation active

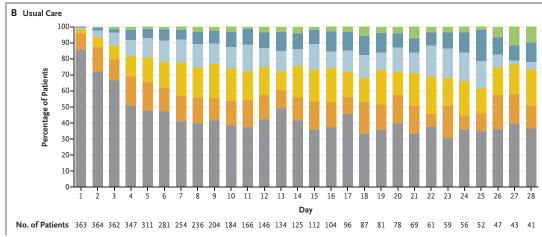
Patients adultes sous ventilation mécanique >24h

Etat suffisamment stable pour rendre la mobilisation possible

N Engl J Med. 2022 Nov 10;387(19):1747-1758.

Characteristic	Early Mobilization (N=371)	Usual Care (N=370)
Age — yr	60.5±14.8	59.5±15.2
Female sex — no. (%)	128 (34.5)	146 (39.5)
Body-mass index†	29.9±7.9	30.4±7.8
Frailty and function		
Median score on Clinical Frailty Scale (IQR):	3 (2 to 4)	3 (2 to 4)
Median score on Functional Comorbidity Index (IQR)∫	2 (1 to 3)	2 (1 to 3)
Median score on WHODAS 2.0 (IQR)¶	10.4 (2.1 to 25.0)	8.7 (2.1 to 22.7)
Highest score on the ICU Mobility Scale in wk before ICU admission	9.9±0.6	9.8±0.7
Median interval from hospital admission to randomization (IQR) — hr	88.3 (50.5 to 137.0)	81.6 (48.2 to 147.0)
Median interval from ICU admission to randomization (IQR) — hr	60.1 (35 to 92.3)	61.3 (33.8 to 96.1)
ICU admission type — no. (%)		
Planned ICU admission after elective surgery	68 (18.3)	58 (15.7)
Unplanned ICU admission	303 (81.7)	312 (84.3)
Median RASS score at randomization (IQR)**	−3 (−4 to −2)	−3 (−4 to −2)
Measurements and interventions at randomization††		
Positive end-expiratory pressure — cm of water	8.9±3.0	8.8±3.1
Pao ₂ :Fio ₂	226±79.1	230±85.2
Receipt of vasopressors by infusion — no. (%)	228 (61.5)	231 (62.4)
Receipt of renal-replacement therapy — no. (%)	82 (22.1)	79 (21.4)
APACHE II score‡‡	18.2±6.8	18±6.9
Diagnosis subgroup — no. (%)∭		
Sepsis¶¶	246 (66.3)	245 (66.2)
Trauma	15 (4.0)	14 (3.8)
Covid-19	7 (1.9)	10 (2.7)


N Engl J Med. 2022 Nov 10;387(19):1747-1758.

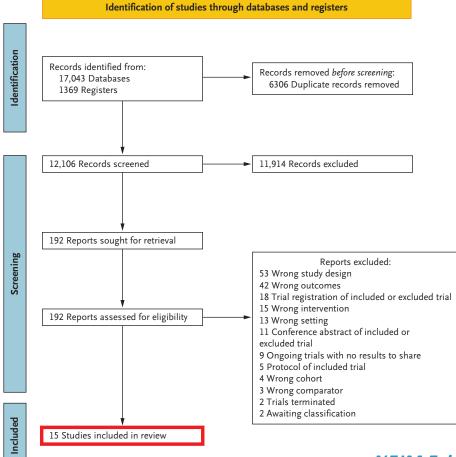

Characteristic	Early Mobilization (N=371)	Usual Care (N=370)	Between-Group Difference (95% CI)†
Patients who were assessed by a physiotherapist on day of randomization — no./total no. (%)	320/370 (86.5)	265/363 (73.0)	13.5 (6.7 to 20.3)
No. of days per patient when physiotherapy assessment oc- curred	0.94±0.11	0.81±0.24	0.14 (0.12 to 0.16)
No. of minutes of active mobilization per day	20.8±14.6	8.8±9.0	12.0 (10.4 to 13.6)
Mobilization milestones‡			
IMS 3 or higher			
Patients — no. (%)	331 (89.2)	330 (89.2)	0 (-4.3 to 4.3)
Median no. of days since randomization (IQR)	3 (1 to 6)	4 (2 to 7)	-1 (-2.2 to -0.2)
IMS 4 or higher			
Patients — no. (%)	287 (77.4)	286 (77.3)	0.1 (-6.0 to 6.1)
Median no. of days since randomization (IQR)	3 (2 to 7)	5 (3 to 8)	-2 (-3.4 to -0.6)
IMS 7 or higher			
Patients — no. (%)	176 (47.4)	150 (40.5)	6.9 (-0.2 to 14.0)
Median no. of days since randomization (IQR)	5 (3 to 8)	7 (4 to 13)	-2 (-3.4 to -0.7)
Median peak IMS (IQR)	6 (4 to 8)	6 (4 to 8)	0 (-1 to 1)

marcher avec l'aide de ≥2 personnes

ICU mobility scale

N Engl J Med. 2022 Nov 10;387(19):1747-1758.

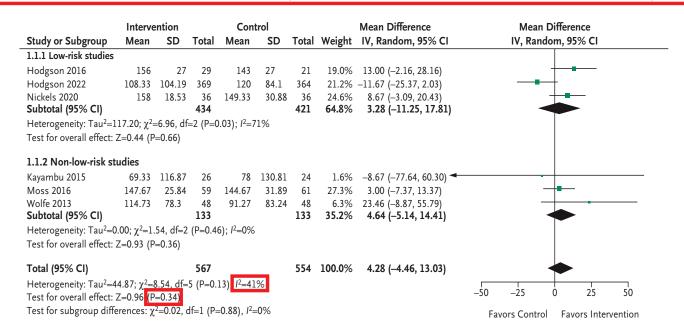
Au total, 77 % des patients des deux groupes étaient capables de se tenir debout après un intervalle médian de 3 jours vs 5 jours (différence, -2 jours ; IC à 95 %, -3,4 à -0,6).


Outcome	Early Mobilization (N=371)	Usual Care (N=370)	Difference or Odds Ratio (95% CI)†	P Value
Primary outcome				
Days alive and out of hospital at day 180‡				
Median no. (IQR)	143 (21 to 161)	145 (51 to 164)	-2.0 (-10 to 6)	0.62
Key secondary outcomes				
Death at day 180				
Patients — no. (%)	83/369 (22.5)	71/364 (19.5)	1.15 (0.81–1.65)§	
Median no. of days since randomization (IQR)	17 (9 to 41)	19 (12 to 50)	-2.0 (-12.0 to 8.0)	
Median no. of ventilator-free days at day 28 (IQR)	21 (8 to 25)	21 (11 to 25)	0.0 (-1.4 to 1.4)	
Median no. of ICU-free days at day 28 (IQR)	16 (0 to 21)	17 (3 to 22)	-1.0 (-3.1 to 1.1)	
Functional outcomes in survivors at day 180¶				
Score on EQ-5D-5L utility score	0.7±0.3	0.7±0.3	0.0 (-0.0 to 0.1)	
Score on EQ Visual Analogue Scale**	70.2±19.7	69.0±20.1	2.0 (-5.7 to 9.7)	
Median score on Barthel Index of ADL (IQR)††	100 (100 to 100)	100 (95 to 100)	0	
Median score on IADL (IQR);;	8.0 (7.0 to 8.0)	8.0 (6.0 to 8.0)	0.2 (-0.9 to 1.3)	
Median score on WHODAS 2.0 (IQR)∭	12.5 (2.1 to 33.3)	14.6 (4.2 to 38.9)	-1.8 (-6.9 to 3.4)	

Adverse events — no. (%) $\P\P$	Early Mobilization (N = 371)	Usual Care (N=370)	Difference or Odds Ratio (95% CI)†	P Value
Patients with ≥1 adverse event potentially due to mobilization — no. (%)	34 (9.2)	15 (4.1)	2.55 (1.33–4.89)§	0.005
Adverse events per patient — no. (%)				0.02
0	337 (90.8)	355 (95.9)		
1	19 (5.1)	11 (3.0)		
2	4 (1.1)	2 (0.5)		
≥3	11 (3.0)	2 (0.5)		
Type of adverse events — no. (%) $\ $ $\ $				
Altered blood pressure	13 (3.5)	8 (2.2)		0.27
Cardiac arrhythmia	13 (3.5)	4 (1.1)		0.03
Oxygen desaturation	8 (2.2)	1 (0.3)		0.02
Pain or agitation	4 (1.1)	1 (0.3)		0.37
Removal of invasive line	2 (0.5)	2 (0.5)		1.00
Gastrointestinal	2 (0.5)	1 (0.3)		1.00
Tachypnea	3 (0.8)	0		0.25
Altered neurologic state	1 (0.3)	1 (0.3)		1.00
Other	4 (1.1)	0		0.12

The Effect of Mobilization at 6 Months after Critical Illness — Meta-Analysis

Michelle Paton, M.Phty., ^{1,2} Sarah Chan, D.Phty., ² Claire J. Tipping, Ph.D., ³ Anne Stratton, B.Phty., ³ Ary Serpa Neto, Ph.D., ¹ Rebecca Lane, Ph.D., ⁴ Paul J. Young, Ph.D., ^{1,5,6,7} Lorena Romero, M.B.I.T., ⁸ Carol L. Hodgson, Ph.D., ^{1,3,7,9} Identification of



NEJM Evid 2023;2(2) DOI: 10.1056/EVIDoa22002

Forest Plot Comparison of Days Alive and Out of Hospital to Day 180.

En utilisant des analyses bayésiennes, la probabilité que l'intervention ait augmenté le nombre de jours en vie et hors de l'hôpital était de 75,1 %.

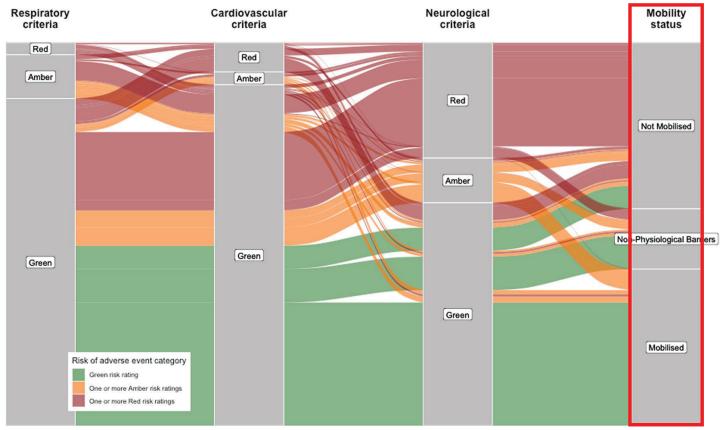
NEJM Evid 2023;2(2) DOI: 10.1056/EVIDoa22002

NEJM	
Evidence	ı

Table 1. Outcomes Including Sens	itivity Analyses	.*					
Outcome	Studies	Patients/Events	Р	l ²	Effect Me	easure	95% CI
Days alive and out of hospital	6	1121	0.34	41	MD	4.28	-4.46 to 13.03
Low-risk studies only	3	855	0.66	71	MD	3.28	-11.25 to 17.81
Mortality	15	2703	0.47	0	Risk ratio	1.05	0.92 to 1.19
Low-risk studies only	8	1499	0.24	0	Risk ratio	1.11	0.93 to 1.34
Adverse events	5	17,618	0.83	97	Risk ratio	1.13	0.37 to 3.43
Low-risk studies only	4	12,269	0.06	85	Risk ratio	1.94	0.98 to 3.86
PF measured with PROM	7	1109	0.0007	0	SMD	0.2	0.09 to 0.32
Low-risk studies only	4	636	0.3	33	SMD	0.14	−0.12 to 0.4
PF measured in person	6	454	0.11	0	SMD	0.15	-0.03 to 0.34
Low-risk studies only	3	182	0.32	0	SMD	0.15	-0.14 to 0.44
Strength	5	390	0.41	0	SMD	0.08	-0.12 to 0.28
Low-risk studies only	3	164	0.52	0	SMD	-0.1	-0.41 to 0.21
HRQoL							
SF-36 PCS	8	783	0.38	38	MD	1.11	-1.38 to 3.6
SF-36 MCS	8	783	0.57	42	MD	0.77	-1.86 to 3.4
Utility scores	4	772	0.84	0	SMD	-0.01	-0.16 to 0.13

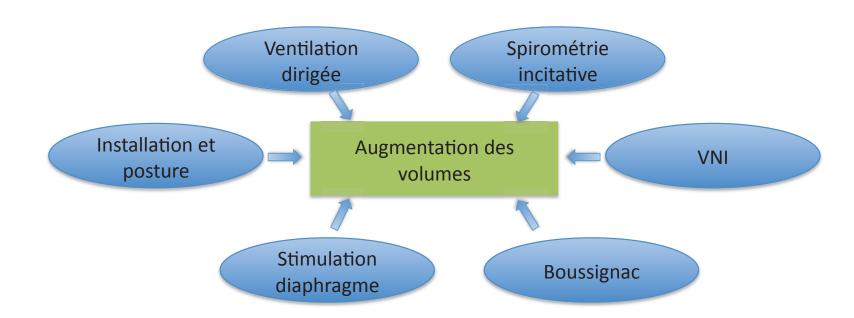
Probabilité de 95,1 % que l'intervention améliore la fonction physique à 6 mois (différence moyenne standardisée, 0,2 ; intervalle de confiance à 95 %, 0,09 à 0,32)

Possibilité de 66,4 % d'augmentation des événements indésirables avec la mise en œuvre de la mobilisation active précoce et une probabilité de 72,2 % d'augmentation de la mortalité à 6 mois


NEJM Evid 2023;2(2) DOI: 10.1056/EVIDoa22002

Médecine personnalisée

Feasibility of mobilisation in ICU: a multi-centre point prevalence study of mobility practices in the UK

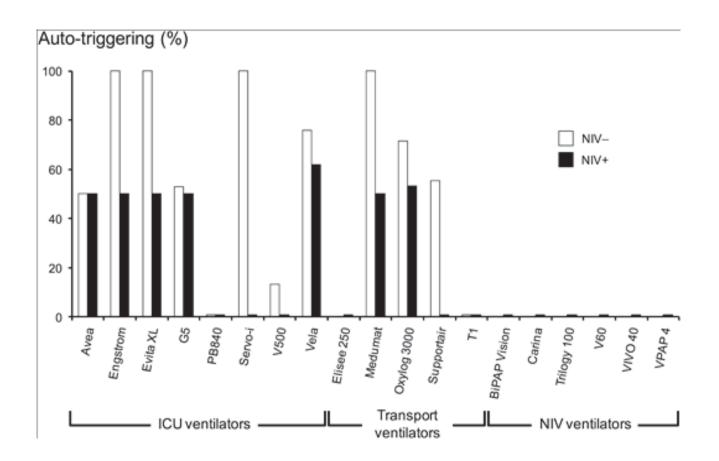

Proportion de patients mobilisés dans les 48-72 heures, selon leur état physiologique

Risque calculée pour chaque défaillance d'organe et l'état de la mobilité

Black et al. Critical Care (2023) 27:217

Kiné respiratoire

VNI: Effets bénéfiques



- 1. Humidification
- 2. FiO₂ max. 100%
- 3. Assistance Respiratoire = Al
- 4. PEP
- 5. Effets cardiaques

VNI: Effets délétères?

- 1. Intolérance
- 2. Asynchronies
- 3. Intubation retardée
- 4. Barotrauma: V_T

Carteaux G et al. Patient-ventilator & asynchrony during noninvasive ventilation: a bench and clinical study.

Chest 2012; 142:367-376.

Nasal-Continuous Positive Airway Pressure Reduces Pulmonary Morbidity and Length of Hospital Stay Following Thoracoabdominal Aortic Surgery

Detlef Kindgen-Milles, Eckhard Müller, Rolf Buhl, Hinrich Böhner, Dennis Ritter, Wilhelm Sandmann and Jörg Tarnow

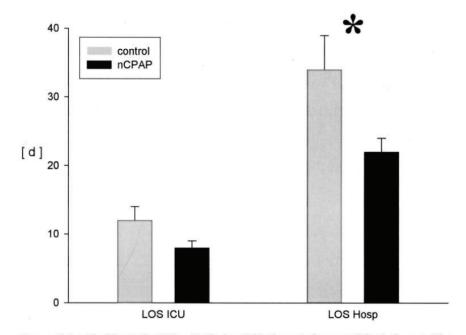


FIGURE 3. Length of stay in the ICU and in the hospital in the control group and the study group. The LOS in the hospital was significantly reduced by 12 days in the study group compared to that in control group. LOS ICU = length of stay in the ICU; LOS Hosp = length of stay in the hospital. * = p < 0.05 for comparison of the control group vs the study group.

Nasal-Continuous Positive Airway Pressure Reduces Pulmonary Morbidity and Length of Hospital Stay Following Thoracoabdominal Aortic Surgery

Detlef Kindgen-Milles, Eckhard Müller, Rolf Buhl, Hinrich Böhner, Dennis Ritter, Wilhelm Sandmann and Jörg Tarnow

Table 2—Pulmonary, Cardiac, and Other Relevant Complications in the Study and Control Groups*

Complications	$\begin{array}{c} {\rm nCPAP~Group} \\ {\rm (n=25)} \end{array}$	$\begin{array}{c} \text{Control Group} \\ \text{(n = 25)} \end{array}$	p Value
Pulmonary complications	7	24	0.019
Pneumonia	0	3	
Atelectasis	2	5	
$Pao_{2}/Fio_{2} < 100$	4	12	
Reintubation	1	4	
Cardiae complications	4	8	NS
Myocardial infarction	0	1	
Cardiac arrhythmia	4	7	
Acute renal failure	1	3	NS
Postoperative delirium	5	4	NS

Continuous Positive Airway Pressure for Treatment of Postoperative Hypoxemia

2005

A Randomized Controlled Trial

Squadrone V and al

Critères inclusion:

Laparo > 90'

P/F <300 après 1h

Masque venturi FiO2 0,3

Venturi Mask (Control)

1322 Patients Enrolled 12 Refused to Participate 1080 Excluded (Did Not Meet Critères d'exclusion: Postoperative Eligibility Criteria) Ins cardiaque sévère 230 Met Postoperative Eligibility Criteria **BPCO** Obésité morbide 21 Excluded 11 Lack of Intensive Care pH<7,3 et PaCO2 > 50 Unit Beds 6 Arterial Oxygen Saturation SpO2<80% en Fi02 0,3 <80% With Maximal Fraction of Inspired Oxygen 3 Arterial pH <7.30 With Paco₂ >50 mm Hg 1 Systolic Blood Pressure <90 mm Hg 209 Randomized 104 Assigned to Receive Oxygen Therapy by 105 Assigned to Receive Oxygen Therapy With Continuous Positive Airway Pressure 2 Developed Treatment Intolerance and 4 Developed Treatment Intolerance and Discontinued Study Treatment Discontinued Study Treatment 104 Included in Analysis 105 Included in Analysis

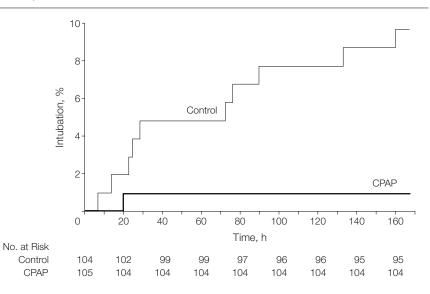
Continuous Positive Airway Pressure for Treatment of Postoperative Hypoxemia A Randomized Controlled Trial

2005

drone V and al	Control (n = 104)	CPAP (n = 105)
Sex, No. (%) Men	64 (62)	71 (68)
Women	40 (38)	34 (32)
Age, mean (SD), y	65 (10)	66 (9)
Body mass index, mean (SD)*	26.3 (4.5)	26.5 (4.7)
Current smoker, No. (%)†	21 (20)	19 (18)
SAPS II, mean (SD)‡	28 (8)	27 (7)
Type of surgery, No. (%) Colectomy	38 (36)	39 (36)
Gastrectomy	7 (6)	6 (6)
Pancreatico-duodenectomy	18 (17)	19 (18)
Retroperitoneal mass	4 (3)	3 (4)
Liver resection	24 (22)	22 (21)
Liver transplant	13 (12)	16 (15)
Pathology, No. (%) Cancer	64 (62)	67 (64)
Noncancer	40 (38)	38 (36)
Comorbidities, No. (%) Diabetes	11 (11)	16 (15)
Hypertension	42 (40)	37 (35)
Postoperative gases, mean (SD) Pao ₂ /FiO ₂	255 (31)	247 (33)
Arterial, pH	7.39 (0.05)	7.38 (0.04)
Paco _{2,} mm Hg	39 (5)	39 (7)
Mean arterial blood pressure, mean (SD), mm Hg	86 (10)	85 (11)
Time of surgical procedure, mean (SD), h§	226 (95)	227 (91)

Continuous Positive Airway Pressure for Treatment of Postoperative Hypoxemia

2005


A Randomized Controlled Trial

Squadrone V and al

Critère principal de jugement: intubation à J7

2. Kaplan-Meier Estimates of Intubation Rate

Arrêt à l'analyse intermédiaire pour supériorité CPAP p=0,005!!

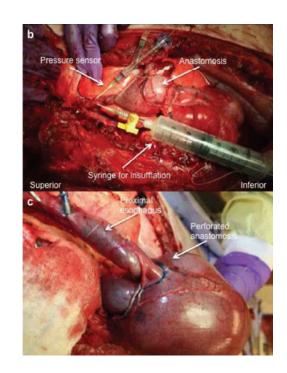
Continuous Positive Airway Pressure for Treatment of Postoperative Hypoxemia A Randomized Controlled Trial

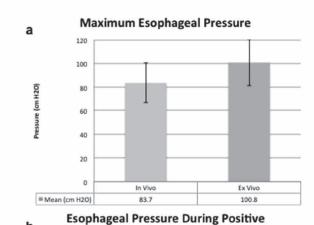
2005

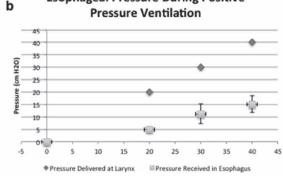
Squadrone V and al

Table 2. Secondary Outcomes

	Control (n = 104)	CPAP (n = 105)	Difference of Means (95% CI)	<i>P</i> Value*
ICU length of stay, mean, d	2.6	1.4	-1.2 (-2.0 to -0.3)	.09
Median (95% CI), d	1 (1-11)	1 (1-4)		
Hospital length of stay, mean (SD), d	17 (15)	15 (13)	-2 (-6 to 2)	.10
Median (95% CI)	12 (7-47)	11 (6-35)		
			Relative Risk (95% CI)	
Pneumonia, No. (%)†	10 (10)	2 (2)	0.19 (0.04 to 0.88)	.02
Infection, No. (%)‡	11 (10)	3 (3)	0.27 (0.07 to 0.94)	.03
Sepsis, No. (%)§	9 (9)	2 (2)	0.22 (0.04 to 0.99)	.03
Anastomotic leakage, No.	6	1		
Pneumonia, No.	3	1		
Deaths, No. (%)	3 (3)	O (O)		.12


Non-Invasive Positive Pressure Ventilation Following Esophagectomy: Safety


Demonstrated in a Pig Model


Vignesh Raman, B.S.¹, Caitlyn E. MacGlaflin, M.S.¹, Cherie P. Erkmen, M.D.¹

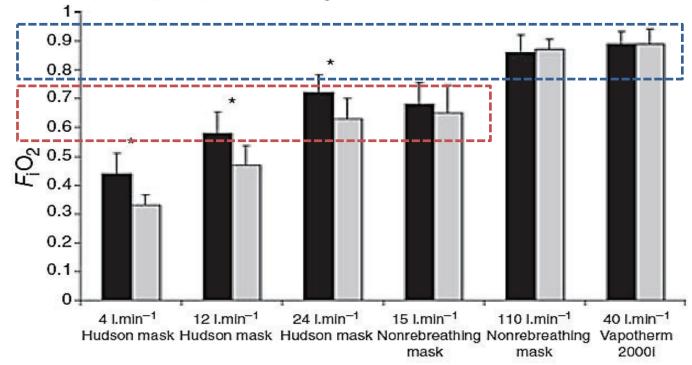
2015

Confort: via lunettes et humidification

2 Oxygénation: Haut Débit = Haute FiO₂

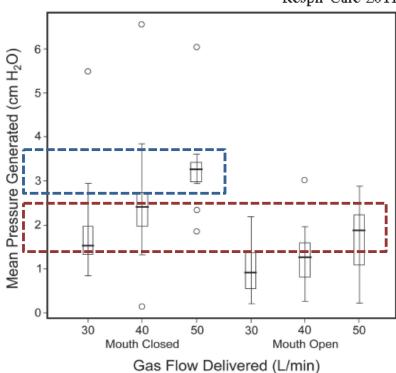
Effet PEP: Oxygénation - Prévention des atélectasies?

4 Lavage espace mort: PaCO₂



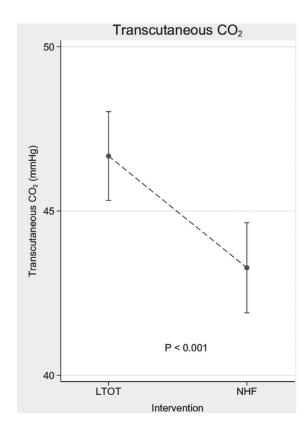
Augmentation de la PaO₂
Diminution de l'effort et de la fréquence respiratoire

Performance of oxygen delivery devices when the breathing pattern of respiratory failure is simulated*


M. A. B. Sim, P. Dean, J. Kinsella, R. Black, R. Carter and M. Hughes

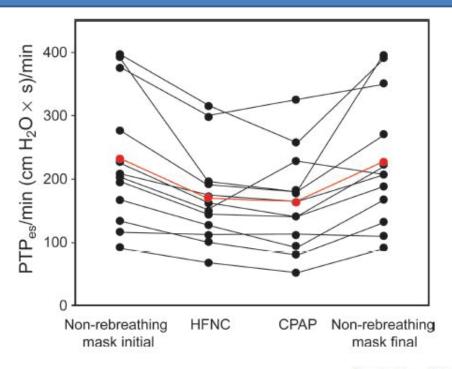
The Effects of Flow on Airway Pressure During Nasal High-Flow Oxygen Therapy

Rachael L Parke RN MHSc, Michelle L Eccleston RN, and Shay P McGuinness MB ChB


Respir Care 2011;56(8):1151-1155.

Lavage espace-mort

Nasal high flow oxygen therapy in patients with COPD reduces respiratory rate and tissue carbon dioxide while increasing tidal and end-expiratory lung volumes: a randomised crossover trial

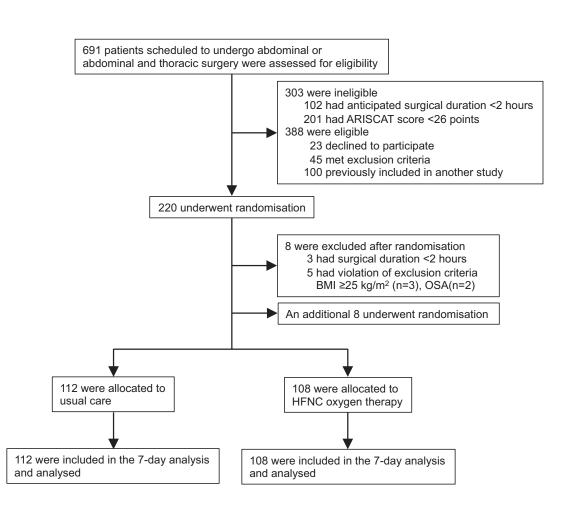

Fraser et al., Thorax 2016

Physiologic Effects of High-Flow Nasal Cannula Oxygen in Critical Care Subjects

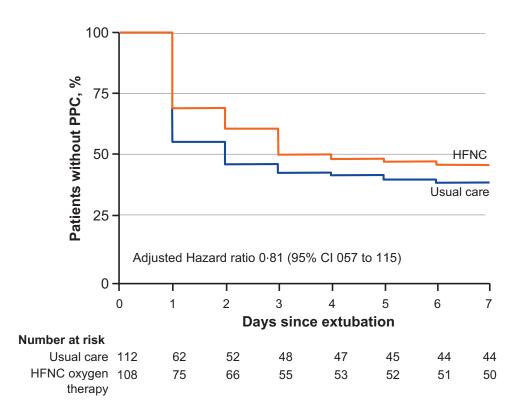
Frederic Vargas MD PhD, Mélanie Saint-Leger MD, Alexandre Boyer MD PhD, Nam H Bui MD, and Gilles Hilbert MD PhD

Diminution du travail respiratoire

Respir Care 2015;60(10):1369-1376


	High-Flow	Standard	NIV	_
	Oxygen group	Oxygen group	group	
	(n=106)	(n=94)	(n=110)	P Value
Respiratory patient-discomfort at inclusion – mm †	38±31	44±29	46±30	0.20
Respiratory patient-discomfort at H1– mm †	29	40	43	<0.01
Grade of dyspnea at H1‡	76%	42%	58%	<0.001
Marked improvement – no. (%)	19 (22.1)	5 (6.8)	13 (14.3)	
Slight improvement– no. (%)	46 (53.5)	26 (35.1)	40 (44.0)	
No change– no. (%)	18 (20.9)	33 (44.6)	23 (25.3)	
Slight deterioration – no. (%)	3 (3.5)	9 (12.2)	8 (8.8)	
Marked deterioration – no. (%)	0 (0.0)	1 (1.3)	7 (7.7)	
Respiratory rate- breaths/min				
H1	28±7	31±7	31±8	<0.01
H6	27±7	29±8	29±7	0.13

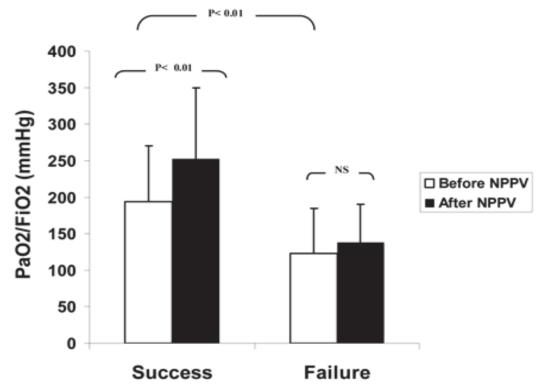
Frat JP, Thille AW et al., New England Journal of Medicine 2015; 372:2185-2196.


ORIGINAL

Effect of early postextubation high-flow nasal cannula vs conventional oxygen therapy on hypoxaemia in patients after major abdominal surgery: a French multicentre randomised controlled trial (OPERA)

Emmanuel Futier^{1,2}, Catherine Paugam-Burtz³, Thomas Godet¹, Linda Khoy-Ear³, Sacha Rozencwajg³, Jean-Marc Delay⁴, Daniel Verzilli⁴, Jeremie Dupuis¹, Gerald Chanques^{4,6}, Jean-Etienne Bazin¹, Jean-Michel Constantin^{1,2}, Bruno Pereira⁵, Samir Jaber^{4,6*} and OPERA study investigators

Outcomes	No./total no. (%)		ARR or between-group	<i>p</i> value
	Usual care	HFNC oxygen therapy	difference (95 % CI)	
Primary outcomes				
Postoperative hypoxaemia ^{a,b}				
1 h after extubation	27/112 (24)	23/108 (21)	-3 (-14 to 8)	0.62
After discontinuation of the study treatment	34/112 (30)	29/108 (27)	-4 (-15 to 8)	0.57
Secondary outcomes				
Need for supplemental oxygen therapy after treat- ment discontinuation	92/112 (82)	79/108 (73)	-9 (-20 to 2)	0.11
Pulmonary complications ^c within 7 days				
Grade 1 or 2	49/112 (44)	37/108 (34)	-10 (-25 to 4)	0.17
Grade ≥3	19/112 (17)	21/108 (20)	2 (-8 to 13)	0.63
Bronchial congestion	14/112 (13)	16/108 (15)	2 (-7 to 11)	0.62
Hypoxaemia ^d	30/112 (27)	30/108 (28)	0 (-11 to 13)	0.87
Pneumonia	10/112 (9)	10/108 (9)	0 (–7 to 8)	0.93
Need for intubation or NIV for respiratory failure ^e	14/112 (13)	20/108 (19)	6 (–4 to 16)	0.22
Surgical reoperation within 7 days ^f	5/112 (4)	2/108 (2)	-3 (-7 to 2)	0.45
Unexpected ICU admission	16/112 (14)	16/108 (15)	0 (–9 to 10)	0.91
ICU length of stay (days)	5 (3–13)	6 (4–16)	3 (–5 to 12)	0.53
Hospital length of stay (days)	11 (7–18)	12 (7–20)	0.5 (-3.5 to 4.5)	0.58
In-hospital mortality	3/112 (3)	2/108 (2)	-1 (-5 to 3)	0.68


Among patients undergoing major abdominal surgery, early preventive application of high-flow nasal canula oxygen therapy after extubation did not result in improved pulmonary outcomes compared with standard oxygen therapy.

Outcomes of Patients With Acute Respiratory Failure After Abdominal Surgery Treated With Noninvasive Positive Pressure Ventilation

Samir Jaber, Jean-Marc Delay, Gérald Chanques, Mustapha Sebbane, Eric Jacquet, Bruno Souche, Pierre-François Perrigault and Jean-Jacques Eledjam

Chest 2005;128;2688-2695

96 patients présentant une IRA (groupe initialement hospitalisé en soins intensifs de 627 patients)

Jaber S et al Outcomes of patients with acute respiratory failure after abdominal surgery treated with noninvasive positive pressure ventilation Chest 2005; 128: 2688-95

Outcomes of Patients With Acute Respiratory Failure After Abdominal Surgery Treated With Noninvasive Positive Pressure Ventilation

Samir Jaber, Jean-Marc Delay, Gérald Chanques, Mustapha Sebbane, Eric Jacquet, Bruno Souche, Pierre-François Perrigault and Jean-Jacques Eledjam

Chest 2005;128;2688-2695

Critères assez larges de détresse et hypoxémie

FDR d'échec:

- Hypoxémie plus sévère
- Amélioration PaO2 plus faible

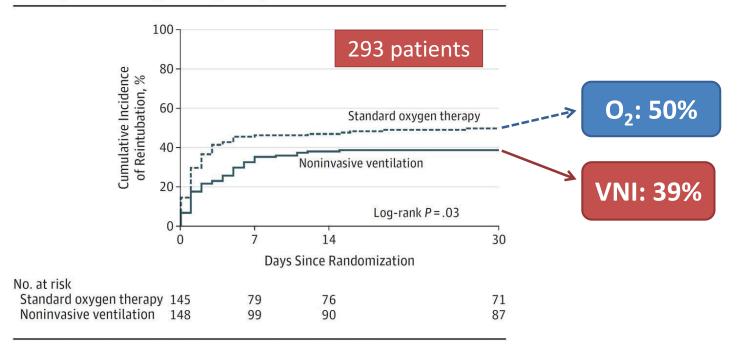
Variables	Nonintubated (n = 48)	Intubated (n = 24)	p Value†
Body temperature, °C	37.2 ± 0.8	37.6 ± 0.8	NS
Systolic BP, mm Hg			
Before NPPV	136 ± 22	151 ± 27	NS
After NPPV	132 ± 28	144 ± 24	NS
Diastolic BP, mm Hg			
Before NPPV	72 ± 20	75 ± 17	NS
After NPPV	67 ± 15	71 ± 14	NS
Heart rate, beats/min			
Before NPPV	88 ± 15	99 ± 16	NS
After NPPV	85 ± 14	99 ± 17	NS
Respiratory rate, breaths/min			
Before NPPV	28.2 ± 3.4	28.6 ± 4.0	NS
After NPPV	23.1 ± 3.8≬	25.3 ± 5.1	NS
pH	-		
Before NPPV	7.39 ± 0.07	7.40 ± 0.07	NS
After NPPV	$7.49 \pm 0.06 \pm$	7.40 ± 0.07	NS
Pao ₂ /Fio ₂ , mm Hg			
Before NPPV	194 ± 76	123 ± 62	< 0.01
After NPPV	253 ± 97≬	138 ± 52	< 0.01
Paco ₂ , mm Hg			
Before NPPV	42 ± 7	40 ± 7	NS
After NPPV	$39 \pm 6 \ddagger$	40 ± 8	NS

Outcomes of Patients With Acute Respiratory Failure After Abdominal Surgery Treated With Noninvasive Positive Pressure Ventilation

Samir Jaber, Jean-Marc Delay, Gérald Chanques, Mustapha Sebba Eric Jacquet, Bruno Souche, Pierre-François Perrigault and Jean-Jacques Eledjam

Chest 2005;128;2688-2695

Characteristics	Nonintubated (n = 48)	$\begin{array}{c} {\rm Intubated} \\ {\rm (n=24)} \end{array}$	p Value
Total NPPV trials per day, No.	5.4 ± 2.1	4.2 ± 3.5	NS
Duration of NPPV trial, min	26.9 ± 15.6	24.3 ± 13.9	NS
Total duration of NPPV use, d	3.1 ± 1.2	1.9 ± 1.1	< 0.01
Total duration of NPPV use, h	9.3 ± 3.2	4.2 ± 2.1	< 0.01
Pressure support level, cm H ₂ O	13.7 ± 2.3	13.5 ± 1.7	NS
PEEP level, cm H ₂ O	5.8 ± 2.4	5.6 ± 2.8	NS
F10 ₂ , %	50.0 ± 9.8	59.8 ± 12.3	NS
NPPV complications	2(13)	3 (23)	NS
Gastric distension, No.	0	1	
Skin necrosis, No.	1	1	
Agitation, No.	1	1	
Major air leaks, No.	2	3	
ICU length of stay, d	17.3 ± 10.9	34.1 ± 28.5	< 0.01
Hospital length of stay, d	32.7 ± 12.3	45.4 ± 29.5	< 0.01
ICU mortality	3 (6)	7 (29)	< 0.01
Hospital mortality	4(8)	9 (38)	< 0.01


Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Noninvasive Ventilation on Tracheal Reintubation Among Patients With Hypoxemic Respiratory Failure Following Abdominal Surgery

A Randomized Clinical Trial

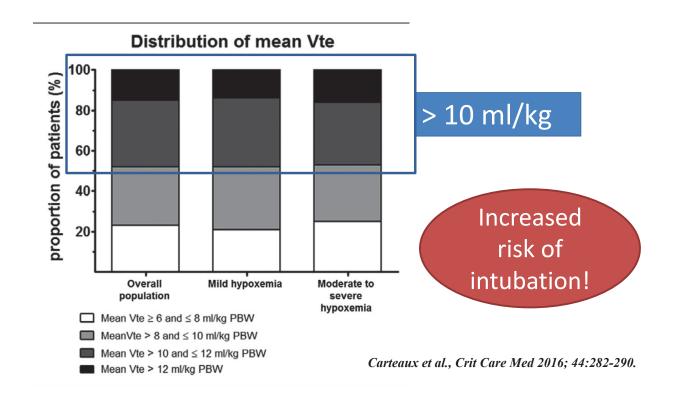
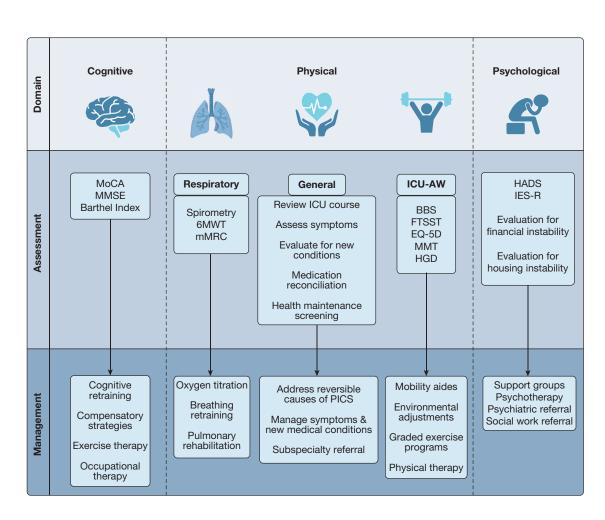

Jaber et al., JAMA 2016; 315:1345-1353.

Figure 2. Cumulative Incidence of Reintubation Between Randomization and Day 30 According to Study Group


Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume

Guillaume Carteaux, MD^{1,2,3}; Teresa Millán-Guilarte, MD⁴; Nicolas De Prost, MD, PhD^{1,2,3}; Keyvan Razazi, MD^{1,2,3}; Shariq Abid, MD, PhD³; Arnaud W. Thille, MD, PhD⁵; Frédérique Schortgen, MD, PhD^{1,3}; Laurent Brochard, MD^{3,6,7}; Christian Brun-Buisson, MD^{1,2,8}; Armand Mekontso Dessap, MD, PhD^{1,2,3}

Conclusion

- Défi majeur dans la pratique clinique
- Evaluations répétées des fonctions physiques, psychologiques et cognitives en réanimation
- Approche individualisée, multimodale et interdisciplinaire
- Adhésion à l'« evidence based medecine »

